R e análise espacial para Geologia - Volume 2

André Luiz Lima Costa

"A second chance doesn't mean you're in the clear. In many ways, it is the more difficult thing. Because a second chance means that you have to try harder. You must rise to the challenge without the blind optimism of ignorance."

Ling Ma

Para Regiane, Gabriela e George. Pilares abençoados de minha recuperação pessoal, sou eternamente agradecido a vocês...

Licença: CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Índice

Introdução	5
Dados	5
PARTE 4 – R, PostgreSQL e Postgis	6
4.1 – Instalando PostgreSQL e Postgis	6
4.1.1 – Windows	6
4.1.2 – Linux – Centos ou RedHat (PostgreSQL e Postgis)	11
4.1.3 – Linux – Ubuntu ou debian (PostgreSQL e Postgis)	11
4.1.4 – OSX	12
4.1.5 – Ajustes finais	12
4.2 – O PostgreSQL e SQL	13
4.2.1 – Testando instalação e Criando o Super Usuário	13
4.2.2 – Criando o superusuário	13
4.2.3 – Escopo de acesso ao banco de dados	13
4.2.4 – SOL	14
4.3 – Postgis básico	25
PARTE 5 – Criando o Banco de Dados	29
5.1 – Criando banco de dados geoespacial	29
$5.1.1 - \Omega$ banco de dados	29
5.1.2 – Sistema de Coordenadas do banco de dados	29
5.2 – Carregando dados geoespaciais no geobanco de dados	
5.2 1 – Dados vector	20
5.2.1 Dados vector	23
5 3 – Dados de Campo em geral	38
5.3 1 – Dados de sondagem	38
Inserindo dados	40
PARTE 6	40 43
6 1 – Integração de dados geológicos e análise espacial	43 43
6.1.1 - Dados na superfície	<u>ر</u> ب 43
6.1.2 - Estruturando informação em espaço tridimensional	15
6.1.2 - Estruturando informação em espaço informensional	ΩΛ
6.2 – Modelagem de recursos usando P e CSUB	55
6.2.1 Instalando o CSUB	55
6.2.2 Droparando os dados	56
6.2.2 – Freparatido os dados	50 59
6.2.4 Desagrupamento do dados (declustoring)	50 CD
6.2.5 Histograma o CDE dos dados desagrupados	02
6.2.6 Somiyariograma	04
6.2.7 Vrigagem 2D	0/
6.2.9 Estatísticas de reguras	/0
6.2.0 – Estatisticas do recurso	/1
0.2.9 – VISUAIIZAIIUO OS RESUITAUOS	/4
Visualizando os futos de sonda (criando arquivo vik)	с/
Visualizando as amostras (criando arquivo vik)	//
visualizando modelo de Dioco (criando arquivo vtk)	/9
6.3 – Curvas LAS e exemplo de analise petrofísica basica	84
6.3.1 – Lendo o arquivo LAS e carregando em formato data.trame	84
6.3.2 – Carregando os dados no banco de dados	84
6.3.3 – Extraindo parametros petrofisicos	88
Carregando as curvas	88
Calculando o VSn	88

Calculando a Porosidade	89
Calculando o Sw	91
Calculando Net Reservoir e Net Pay	92
6.4 - Dados SEG-Y	98
6.5 – Dados de Geofísica aérea (Oasis Montaj)	

Introdução

Neste volume dois daremos continuidade ao uso de R em geologia. O objetivo agora é a integração de R com outras tecnologias e ferramentas no contexto da geologia.

Vamos cobrir na **PARTE 4** o básico de um banco de dados PostgreSQL e a extensão Postgis,

Na **PARTE 5** vamos cobrir como colocar os dados de exploração geológica no banco de dados para fácil acesso usando R

Na **PARTE 6** vamos usar R e outros softwares modernos que integram de maneira direta com banco de dados para visualização ou para a criação de novas interpretações.

Dados

Os dados usados nesta apostila se encontram em:

http://amazeone.com.br/barebra/apostilaRgeo/index.php

VISITE:

http://amazeone.com.br

PARTE 4 – R, PostgreSQL e Postgis

Lidando com grande quantidade de dados geoespaciais e de diversas fontes se faz crucial usar um banco de dados para armazenar, organizar e acessar toda essa informação. O PostgreSQL é o melhor banco de dados relacional existente com suporte a dados geoespaciais usando a extensão Postgis. Vamos aqui cobrir alguns conceitos bem básicos deste banco de dados.

4.1 – Instalando PostgreSQL e Postgis

O PostgreSQL pode ser instalado em vários sistema operacionais, veremos abaixo como instalar nos sistemas mais populares.

4.1.1 – Windows

Do site www.enterprisedb.com/downloads/postgres-postgresql-downloads#windows selecione a versão do Postgresql e o sistema operacional windows (32 ou 64 bits).

PostgreSQL Database Download

Version	Linux x86-64	Linux x86-32	Mac OS X	Windows x86-64	Windows x86-32
12.3	N/A	N/A	Download	Download	N/A
11.8	N/A	N/A	Download	Download	N/A
10.13	Download	Download	Download	Download	Download
9.6.18	Download	Download	Download	Download	Download

Faça o download e execute o **.exe** a seguinte tela deverá aparecer:

Siga as telas de instruções, selecionando as opções padrões, crie uma senha para o usuário postgres quando solicitado (guarde esta senha). Quando chegar na telo do StackBuilder selecione executar para podermos instalar o Postgis adiante.

🗃 Setup			_		\times
Installation Directory					
Please specify the corv where PostareSOL will be install Installation Directory C: Program Files PostgreSQL \10	ed.				
InstallBuilder	< Back	2 Nex	ct >	Cance	el

Password	
Please provide Dassword for the database subgruser (pos	tares).
Password *****	
Retype password *****	
InstallBuilder	< Back Next > Cancel

Pre Installation Summary

Server Installat Data Directory: Database Port: Database Supe Operating Syste Database Servi Command Line pgAdmin4 Insta Stack Builder In	ion Directory: C C:\Program File 5433 ruser: postgres em Account: NT ce: postgresql-x Tools Installation Ilation Directory stallation Directo	AUTHORITY Wet (64-10 Directory: C: \Program Files) C: (Program File (7)	vostgreSQL\10 I\data workService ogram Files\Pos is\PostgreSQL\1 Files\PostgreSQ	stgreSQL\10 .0\pgAdmin 4 L\10	

- 🗆 ×

🅶 Setup	—		\times
Ready to Install			
Setup is now ready to begin installing PostgreSQL on your computer.			
InstallBuilder	ext >	Can	cel

A seguinte tela deverá aparecer (Versão poderá ser mais recente).

Escolha o componente PostGIS (a versão pode ser diferente da mostrada)

Stack Builder 3.1.0		×
	Please select the applications you would like to install. Categories Add-ons, tools and utilities Database Drivers Database Server Registration-required and trial products Spatial Extensions PostGIS 1.5 for PostgreSQL 9.1 v1.5.3 (installed) PostGIS 2.0 for PostgreSQL 9.1 v2.0.0 Web Applications Web Development PostGIS "spatially enables" the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information systems (GIS). PostGIS follows the OpenGIS "Simple Features Specification for SQL" and has been Add-ons, tools and utilities PostGIS "spatially enables" the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information systems (GIS). PostGIS follows the OpenGIS "Simple Features Specification for SQL" and has been Cancel	

PostgreSQL e Postgis devem estar agora instalados no seu sistema windows.

4.1.2 - Linux - Centos ou RedHat (PostgreSQL e Postgis)

Abaixo seguem os comandos para instalar PostgreSQL e Postgis num sistema RedHat ou Centos

sudo yum install postgresql12-server
sudo /usr/pgsql-11/bin/postgresql-12-setup initdb
sudo systemctl start postgresql-12.service
sudo systemctl enable postgresql-12
sudo yum install postgresql12-devel
<pre>sudo yum -y install https://download.postgresql.org/pub/repos/yum/reporpms/EL-</pre>
7-x86_64/pgdg-redhat-repo-latest.noarch.rpm
sudo yum install postgis30_12
sudo yum install geos-devel

4.1.3 – Linux – Ubuntu ou debian (PostgreSQL e Postgis)

Abaixo segue um script de referência (copie e grave como pgR_script.sh) para instalação num sistema RedHat ou Centos e execute usando sudo ./pgR_script.sh

```
sudo apt-get install postgresql-12
sudo apt-get install postgresql-server-dev-12
sudo apt install postgis
sudo apt install libgeos-dev
```

4.1.4 - OSX

A forma mais simples de instalar é usando homebrew. Instale homebrew conforme abaixo usando terminal:

```
$ xcode-select -install
$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ echo "export LC_ALL=en_US.UTF-8" >> ~/.bash_profile
$ echo "export LANG=en_US.UTF-8" >> ~/.bash_profile
$ echo "export PATH=/usr/local/bin:$PATH" >> ~/.bash_profile && source
~/.bash profile
```

No terminal execute:

\$ brew install postgres \$ brew install postgis \$ pg_ctl -D usrlocal/var/postgres start initdb usrlocal/var/postgres \$

4.1.5 – Ajustes finais

Abaixo segue uma lista de pacotes que devem ser instalados no seu ambiente R:

- > install.packages('RPostgreSQL')
 > install.packages('rpostgis')

Vamos agora dar uma pincelada nos conceitos de PastgreSQL, SQL básico e Postgis básico. Para se aprofundar nesses tópicos existe vasta informação na internet.

4.2 – O PostgreSQL e SQL

Após a instalação do PostgreSQL, o primeiro passo é criarmos um usuário que ira ser o gerenciador ou administrador do banco de dados e em seguida vamos determinar o acesso do banco de dados. Depois iremos cobrir os principais aspectos de SQL de forma bem superficial por não se tratar do tópico principal deste volume.

4.2.1 – Testando instalação e Criando o Super Usuário

Em uma tela monitor teste a instalação do postgresql como o usuário padrão 'postgres' que é criado durante a instalação usando sudo -i -u postgres Após entrar digite psql e o prompt do psql deverá aparecer.

\$ sudo -i -u postgres
[sudo] password for usuário:
postgres@ \$ psql
psql (12.2 (Ubuntu 12.2-4))
Type "help" for help.
postgres=# \q
postgres@ \$ exit
logout
\$

Sua instalação deverá apresentar o resultado acima, saia do prompt do psql usando q e saia do usuário postgres usando exit.

4.2.2 – Criando o superusuário

Efetue novamente o login como 'postgres' e execute o comando createuser conforme mostrado abaixo. O ideal é que o nomeDoUsuário seja já o seu usuário no seu sistema operacional para efeitos de praticidade.

```
$ sudo -i -u postgres
[sudo] password for usuário:
postgres@ $ createuser --interactive
Enter name of role to add: nomeDoUsuário
Shall the new role be a superuser? (y/n) y
```

Pronto, já temos um usuário com todos os poderes no postgresql.

4.2.3 – Escopo de acesso ao banco de dados

Agora vamos configurar o postgreSQL de acordo com o acesso que este dará aos usuários, somente localhost ou visível em intra / internet. Também podemos configurar grupos ou usuários com alguns tipos de restrições.

Acesso Local

Se o acesso ao banco de dados for efetuado somente na máquina local (localhost) nada é preciso ser feito no que diz respeito a configurações, pode pular para o próximo tópico.

Acesso Remoto

Caso o acesso ao banco de dados for a partir de máquinas remotas se faz necessária a alteração dos seguintes arquivos de configuração e o reinício do postgreSQL para aplicar as mudanças,: Modificamos como o usuário raiz o arquivo postgresql.conf que pode ser localizado usando:

```
$ sudo -i
root@~# find / -name "postgresql.conf"
/etc/postgresql/12/main/postgresql.conf
```

No meu sistema ele está em.: /etc/postgresql/12/main/postgresql.conf

Edite o arquivo e acrescente listen_addresses = '*' na última linha do arquivo usando:

root@:~# echo "listen_addresses='*'" >> /etc/postgresql/12/main/postgresql.conf

Edite o arquivo pg_hba.conf e acrescente host all all 0.0.0/32 md5 na última linha do arquivo usando:

root@~# echo "host all all 0.0.0.0/32 md5">>/etc/postgresql/12/main/pg_hba.conf

Agora reiniciamos o PostgreSQL usando:

root@:~# systemctl restart postgresql.service

Desta forma usuários do banco de dados podem usar máquina remotas para acessar o banco de dados após entrarem com as credenciais de **nome de usuário** e **senha**.

Modificando os valores que entramos no pg_hba.conf podemos restringir mais o acesso caso seja necessário. Podemos também refinar o acesso usando o comando SQL ROLE que veremos e seguir. Pode agora sair do usuário root usando exit.

4.2.4 – SQL

SQL ou Structured Querry Language é a forma que criamos tabelas e extraímos informações destas em um banco de dados.

Vamos criar o nosso banco de dados com caracteres UTF8 e nome geobanco. Existem duas maneiras de fazermos isso: Usando o comando createbd \$ createdb geobanco --encoding=utf8

```
Ou usando SQL de dentro do banco de dados template1 que é instalado junto com postgresql.
$ psql template1
psql (12.2 (Ubuntu 12.2-4))
Type "help" for help.
template1=# CREATE DATABASE geobanco ENCODING UTF8;
CREATE DATABASE
template1=# \q
$
```

Uma vez criado nosso banco de dados entramos nele usando:

```
$ psql geobanco
psql (12.2 (Ubuntu 12.2-4))
Type "help" for help.
```

geobanco=#

Vamos agora ver rapidamente os comandos principais do PostgreSQL

Já vimos acima que acessamos o banco de dados via linha de comando usando:

psql [nomeDoBancoDeDados]
Por exemplo:
\$ psql geobanco

Agora veremos os comando de visualização de informações de dentro do ambiente Postgresql que é indicado pelo prompt "geobanco=#". Estes comandos se iniciam por '\':

O comando \c conecta a outro banco de dados;

Por exemplo, o comando seguinte se conecta ao banco de dados template1 e de volta ao banco de dados geobanco:

```
geobanco=# \c template1
You are now connected to database "template1" as user "username".
template1=# \c geobanco
You are now connected to database "geobanco" as user "username".
geobanco=#
```

Lista todos os bancos de dados no servidor PostgreSQL: geobanco=# \l

```
Lista todos os esquemas:
geobanco=# \dn
```

Lista todos procedimentos armazenados e funções: geobanco=# \df

```
Lista todas as visões (views):
geobanco=# \dv
```

Lista todas as tabelas no banco de dados atual: geobanco=# \dt

Lista todas as tabelas no banco de dados atual com mais detalhes: geobanco=# $\dt+$

```
Lista o detalhe de uma tabela do banco de dados individualmente:
geobanco=# \d+ nome_tabela
```

```
Mostra o procedimento armazenado ou função individualmente:
geobanco=# \df+ nome_função
```

Mostra o resultado em formato mais apresentável: **geobanco=#** \x

Lista todos os usuários: geobanco=# \du

Para sair do psql use: geobanco=# \q

Veremos agora como criar um usuário. Isso é feito através de uma regra (ROLE). É interessante, e seguro criarmos um usuário com somente o privilégio de leitura mas não de alteração de tabelas em um banco de dados. Vamos ver abaixo como isso é feito:

Primeiro criamos uma regra com o nome de 'leitor', lembre que todo comando SQL no ambiente psql deve ser terminado com ';' exceto os comandos que se iniciam com '/'.

geobanco=# CREATE ROLE leitor;

E definimos que essa regra somente lê tabelas do esquema PUBLIC e que não pode fazer login no banco de dados.

geobanco=# GRANT usage on SCHEMA public to leitor;

Agora criamos um usuário chamado 'droid' com senha de acesso 'devcor'

geobanco=# CREATE USER droid WITH PASSWORD 'devcor';

E adicionamos a 'leitor' que transfere as permissões de leitor para 'droid'.

geobanco=# GRANT leitor TO droid;

Usamos \du pra checar os usuários.

geobanco=# \du

```
List of roles
                              Attributes
Role name |
                                                               | Member of
______
droid
        | {leitor}
leitor | Cannot login
                                                               | { }
postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}
         | Superuser, Create role, Create DB
                                                                 | {}
XXXX
Para garantir o acesso a uma tabela para o usuário 'droid' teremos que usar:
geobanco=# GRANT SELECT ON nome_da_tabela TO leitor;
Para garantir o acesso a todas as tabelas para o usuário 'droid' usamos:
geobanco=# GRANT SELECT ON ALL TABLES IN SCHEMA public to leitor;
Para retirar o acesso a uma tabela para o usuário 'droid' teremos que usar:
geobanco=# REVOKE SELECT ON nome_da_tabela FROM leitor;
Para retirar acesso a todas as tabelas para o usuário 'droid' usamos:
              REVOKE SELECT ON ALL TABLES IN SCHEMA public FROM
geobanco=#
leitor;
```

Agora que vimos como criar o banco de dados, navegar sobre informações do banco de dados com os comandos \ e criar e garantir acesso ao banco de dados vamos ver superficialmente como criar as tabelas com os dados e as tarefas básicas relacionadas a seleção, inserção, atualização e deleção de informações.

```
Criando uma nova tabela:
CREATE [TEMP] TABLE [IF NOT EXISTS] nome_tabela(
   chavepri SERIAL PRIMARY KEY,
   coll type(size) NOT NULL,
   col2 type(size) NULL,
   . . .
);
geobanco=# CREATE TABLE collar(
   holeid varchar(12) PRIMARY KEY,
   x numeric(12,2) NOT NULL,
   y numeric(12,2) NOT NULL,
   sonda int DEFAULT 1
);
geobanco=# \d collar
 Table "public.collar"Column |Type| Collation | Nullable | Default
_____+
holeid | character varying(12) || not null |x| numeric(12,2) || not null |y| numeric(12,2) || not null |sonda | integer||
                                                      | 1
Indexes:
    "collar_pkey" PRIMARY KEY, btree (holeid)
Adicionando uma nova coluna na tabela:
ALTER TABLE nome tabela ADD COLUMN nova coluna TYPE;
geobanco=# ALTER TABLE collar ADD COLUMN z numeric(6,2);
geobanco=# \d collar

  Table "public.collar"

  Column |
  Type

  Type
  Collation | Nullable | Default

holeid | character varying(12) || not null |x| numeric(12,2) || not null |y| numeric(12,2) || not null |ende| interes
sonda | integer
z | numeric(6,2)
                                    | | 1
Indexes:
    "collar_pkey" PRIMARY KEY, btree (holeid)
Removendo uma coluna da tabela:
ALTER TABLE nome_tabela DROP COLUMN nome_coluna;
geobanco=# ALTER TABLE collar DROP COLUMN z;
geobanco=# \d collar

      Table "public.collar"

      Column |
      Type

      Type
      Collation | Nullable | Default

holeid | character varying(12) || not null |x| numeric(12,2)| not null |
x | numeric(12,2) |
y | numeric(12,2) |
sonda | integer |
                                                 | not null |
 sonda | integer
                                                          | 1
Indexes:
    "collar_pkey" PRIMARY KEY, btree (holeid)
Renomeando uma coluna da tabela:
ALTER TABLE nome_tabela RENAME nome_coluna TO novo_nome_coluna;
geobanco=# ALTER TABLE collar RENAME holeid TO idfuro;
geobanco=# \d collar
                         Table "public.collar"
                    Type | Collation | Nullable | Default
 Column |
```

	L					
idfuro x y sonda	character varying(12) numeric(12,2) numeric(12,2) integer		not not not 	null null null	1	
Indexes:						
"coli	lar_pkey" PRIMARY KEY,	btree	(idfuro)			

Definindo ou removendo um valor padrão para uma coluna:

ALTER TABLE nome_tabela ALTER COLUMN [SET DEFAULT valor | DROP DEFAULT]

geobanco=# ALTER TABLE collar ALTER COLUMN sonda SET DEFAULT 2; geobanco=# \d collar

Table "public.collar" Type | Collation | Nullable | Default

Column	Туре	Collation	Nullable	Default
idfuro x y sonda Indexes:	character varying(12) numeric(12,2) numeric(12,2) integer		not null not null not null	2
"]]	LAN NKAW! DDIMADV KEV H	troo (idfuro)		

"collar_pkey" PRIMARY KEY, btree (idfuro)

Removendo uma chave primaria de uma tabela:

ALTER TABLE nome_tabela DROP CONSTRAINT nome_chave_primaria; geobanco=# ALTER TABLE collar DROP CONSTRAINT collar_pkey; geobanco=# \d collar

Column	Table "pub. Type	Collar" Collation	Nullable	Default
idfuro x y sonda	<pre> character varying(12) numeric(12,2) numeric(12,2) integer</pre>	 	not null not null not null	2

Adicionando uma chave primária a uma tabela:

ALTER TABLE nome_tabela ADD PRIMARY KEY (coluna,...); geobanco=# ALTER TABLE collar ADD PRIMARY KEY (idfuro,x,y); geobanco=# \d collar Table "public collar"

Column	Туре	Collation	Nullable	Default
idfuro x y sonda Indexes:	character varying(12) numeric(12,2) numeric(12,2) integer		not null not null not null	 2

"collar_pkey" PRIMARY KEY, btree (idfuro, x, y)

Renomeando uma tabela. ALTER TABLE nome_tabela RENAME TO novo_nome_tabela;

geobanco=# ALTER TABLE collar RENAME TO bocafuro; geobanco=# \d collar Did not find any relation named "collar". geobanco=# \d bocafuro Table "public.bocafuro" Column | Type | Collation | Nullable | Default

```
idfuro | character varying(12) | | not null |
x | numeric(12,2) | | not null |
y | numeric(12,2) | | not null |
sonda | integer | | | 2
Indexes:
    "collar_pkey" PRIMARY KEY, btree (idfuro, x, y)
```

Removendo uma tabela e suas dependências:

DROP TABLE [IF EXISTS] nome_tabela CASCADE; geobanco=# DROP TABLE bocafuro CASCADE; geobanco=# \d bocafuro Did not find any relation named "bocafuro".

Índices facilitam as seleções e a velocidade de seleção de dados, vamos ver como criar e remover índices de uma tabela.

```
Vamos novamente criar a nossa tabela:
geobanco=# CREATE TABLE collar(
   holeid varchar(12) PRIMARY KEY,
   x numeric(12,2) NOT NULL,
   y numeric(12,2) NOT NULL,
   sonda int DEFAULT 1
);
Crinado um índice com nome espeficado em uma tabela:
CREATE [UNIQUE] INDEX index_name ON table (column,...)
geobanco=# CREATE INDEX indice ON collar (holeid);
geobanco=# \d collar
                         Table "public.collar"

   Table "public.collar"

   Column |
   Type

   -----+
   Collation | Nullable | Default

holeid | character varying(12) || not null |x| numeric(12,2)| not null |y| numeric(12,2)| not null |sonda | integer| | |
                                                          | 1
Indexes:
    "collar_pkey" PRIMARY KEY, btree (holeid)
    "indice" btree (holeid)
Removendo um índice específico de uma tabela:
DROP INDEX index_name;
geobanco=# DROP INDEX indice;
geobanco=# \d collar
 Table "public.collar"Column |TypeI Collation | Nullable | Default
holeid | character varying(12) || not null |x| numeric(12,2) || not null |y| numeric(12,2) || not null |sonda | integer||
 sonda | integer
                                                         | 1
                                    Indexes:
    "collar_pkey" PRIMARY KEY, btree (holeid)
```

Criando e acessando dados em uma tabela. Vamos criar duas tabelas e demonstrar como inserir, extrair e modificar os dados nelas.

Criando as tabelas: geobanco=# CREATE TABLE collar (holeid VARCHAR(20) PRIMARY KEY, projeto VARCHAR(40) NOT NULL, area VARCHAR(40) NOT NULL, target VARCHAR NOT NULL, x NUMERIC(12,2) NOT NULL, y NUMERIC(12,2) NOT NULL, z NUMERIC(6,2) NOT NULL, srid INTEGER NOT NULL, az NUMERIC(5,2) NOT NULL, dip NUMERIC(4,2) NOT NULL, td NUMERIC(7,2) NOT NULL, rig VARCHAR(20) NOT NULL, drillco VARCHAR(50), inicio DATE, fim DATE); **geobanco=#** \d collar Table "public.collar" Type | Collation | Nullable | Default Column | holeidcharactervarying(20)notprojetocharactervarying(40)notareacharactervarying(40)notareacharactervarying(40)nottargetcharactervaryingnotxnumeric(12,2)notnullynumeric(6,2)notnullsridintegernotnullaznumeric(5,2)notnulldipnumeric(4,2)notnulltdnumeric(7,2)notnullrigcharactervarying(20)notdrillcocharactervarying(50)it _____+ drillco | character varying(50) | inicio | date fim | date Indexes: "collar_pkey" PRIMARY KEY, btree (holeid) geobanco=# CREATE TABLE survey (holeid VARCHAR(20) NOT NULL, estacao VARCHAR(10) NOT NULL, x NUMERIC(12,2) NOT NULL, y NUMERIC(12,2) NOT NULL, depth NUMERIC(6,2) NOT NULL, az NUMERIC(5,2) NOT NULL, dip NUMERIC(4,2) NOT NULL, diametro VARCHAR(20) NOT NULL, comentario VARCHAR(50)); geobanco=# \d survey Table "public.survey" Column | Type | Collation | Nullable |Default _____+ holeid| character varying(20) || not null |estacao| character varying(10) || not null |x| numeric(12,2)| not null |y| numeric(6,2)| not null |depth| numeric(5,2)| not null |dip| numeric(4,2)| not null |diametro| character varying(20) || not null |comentario| character varying(50) || |

Inserindo uma nova linha em tabelas:

INSERT INTO nome_tabela(coluna1,coluna2,...) VALUES(valor_1, valor_2,...); geobanco=# INSERT INTO collar(holeid,projeto,area,target, x,y,z,

srid,az,dip,td,rig,drillco,inicio,fim) VALUES('PBAT-10-01','Potássio AM','AUTAZES','AUTAZES',271624,9614442,22,29191,0,-90,781.1,'LY-50','BoartLongyear','28/01/2010','05/05/2010'); geobanco=# INSERT INTO survey(holeid, estacao,x,y,depth,az,dip,diametro,comentario) VALUES('PBAT-10-01', '1',271624,9614442,0,-90,0,'HQ','');

Inserindo múltiplas linhas em tabelas:

INSERT INTO nome_tabela(coluna1, coluna2, ...)
VALUES(valor_1,valor_2,...),(valor_1,valor_2, ...),(valor_1,
valor_2, ...) ...
geobanco=# INSERT INTO collar(holeid,projeto,area,target, x,y,z,
srid,az,dip,td,rig,drillco,inicio,fim) VALUES('PBAT-1002','Potássio AM', 'AUTAZES', 'AUTAZES',279340, 9612680, 27,
29191,0,-90,889.25,'LY-50', 'BoartLongyear','05/05/2010',
'11/08/2010'), ('PBAT-10-05','Potássio AM', 'AUTAZES', 'AUTAZES',
280941, 9613595,31,29191,0,-90,883.25,'CS-4002', 'Geosol',
'19/11/2010', '02/03/2011');
geobanco=# INSERT INTO survey(holeid, estacao,x,y,depth, az,dip,
diametro,comentario) VALUES('PBAT-10-02',1,279340,9612680,0,-

90,0,'HQ',''),('PBAT-10-05',1,280941,9613595,0,-90,0,'HQ','');

Observe que em SQL valores não numéricos são sempre envolvidos por aspas simples ' '.

Selecionando todos os dados de uma tabela:

Selecionando dados de uma coluna específica de todas as linhas da tabela:

SELECT lista_coluna FROM nome_tabela;

geobanco=# SELECT holeid, drillco FROM collar; boleid ______drillco

noteta	1	di i i co
PBAT-10-01 PBAT-10-02 PBAT-10-05 (3 rows)	+- 	BoartLongyear BoartLongyear Geosol

Selecionando valores únicos de uma coluna na tabela:

SELECT DISTINCT (coluna) FROM nome_tabela; geobanco=# SELECT DISTINCT (rig) FROM collar; rig ------CS-4002 LY-50 (2 rows) Selecionando dados de uma tabela usando um filtro:

SELECT * FROM nome_tabela WHERE condição; geobanco=# SELECT holeid, x, y, z FROM collar WHERE drillco='BoartLongyear';

holeid	X	У	Z
PBAT-10-01 PBAT-10-02 (2 rows)	271624.00 279340.00	9614442.00 9612680.00	22.00 27.00

Assinalando um apelido à coluna selecionada:

SELECT coluna_1 AS uma_coluna, ...FROM nome_tabela; geobanco=# SELECT holeid AS furo FROM survey; furo ------PBAT-10-01 PBAT-10-02 PBAT-10-05 (3 rows)

Selecionando dados usando operador LIKE :

Selecionando dados usando o operador BETWEEN (entre):

SELECT * FROM nome_tabela WHERE coluna BETWEEN menor AND maior; geobanco=# SELECT holeid,dip,az,td FROM collar WHERE td BETWEEN 880 AND 885; holeid | dip | az | td

PBAT-10-05 | -90.00 | 0.00 | 883.25 (1 row)

Retorna o número de linhas de uma tabela:

Ordena as linhas de resultado de forma ascendente ou descendente:

SELECT lista_colunas FROM nome_tabela ORDER BY coluna ASC [DESC], coluna2 ASC [DESC],...; geobanco=# SELECT holeid,td FROM collar ORDER BY td ;

holeid		td
PBAT-10-01 PBAT-10-05 PBAT-10-02		781.10 883.25 889.25

(1 row)

Atualizando os dados para as linhas que satisfaçam a condição especificada pela instrução WHERE. UPDATE nome_tabela SET coluna_1 = valor_1, WHERE condicao; geobanco=# UPDATE survey SET dip = 90 WHERE holeid='PBAT-10-01'; geobanco=# select holeid, estacao, dip from survey; holeid | estacao | dip

PRAT-10-02	- -	1	+- 	0 00
PRAT-10-05	i	1		0.00
PBAT-10-01	i	1		90.00
(3 rows)	1		1	

Deletando todas a linhas de uma tabela:

```
Deletando linhas específicas baseado em uma condição:
DELETE FROM nome_tabela WHERE condicao;
geobanco=# DELETE FROM collar WHERE td<885;</pre>
geobanco=# SELECT * FROM collar;
  holeid | projeto | area | target |
z | srid | az | dip | td | rig |
                                  | target | x |
td | rig | drillco
                                                              У
                                                              fim
inicio
       PBAT-10-02 | Potássio AM | AUTAZES | AUTAZES | 279340.00 |
9612680.00 | 27.00 | 29191 | 0.00 | 90.00 | 889.25 | LY-50 |
BoartLongyear | 2010-05-05 | 2010-08-11
(1 row)
```

Para remover um banco de dados usamos, fora do ambiente psql: \$ dropdb geobanco

Cobrimos aqui o básico do SQL, muito mais é possível ser feito. Existem inúmeras fontes na internet para aprofundar o conhecimento em SQL.

4.3 – Postgis básico

Postgis é uma extensão do PostgreSQL para lidar com dados espaciais dentro de um sistema de banco de dados relacionais (RDBMS). Dentro de uma tabela que representa uma entidade espacial temos a coluna geometria que é geralmente chamada de 'geom' e as demais colunas com os atributos associados a essa geometria.

Vamos criar novamente o nosso banco de dados com caracteres UTF8 e nome geobanco.

```
$ createdb geobanco --encoding=utf8
```

Agora, de dentro don banco de dados iremos criar a extensão postgis.

```
$ psql geobanco
psql (12.2 (Ubuntu 12.2-4))
Type "help" for help.
geobanco=# CREATE EXTENSION postgis;
CREATE EXTENSION
```

Quando criamos a extensão na versão 3 do postgis uma tabela e duas visões (views) são criadas. Esses elementos servem de suporte para as tabelas com elementos 'geom' que serão criadas. A tabela 'spatial_ref_sys', como o próprio nome já diz é uma lista com todos os sistemas de referência geográficos existentes

Postgis te dá a escolha de duas formas diferentes para armazenar a sua informação espacial:

Geometry, que assume que todo o seu dado espacial é representado em um plano cartesiano (como uma projeção de mapa);

Geography, que assume que seus dados espaciais são representados por pontos na superfície terrestre definidos por latitudes e longitudes.

Visualizando as tabelas e suas colunas: **geobanco=#** \d

List of relations						
Schema	Name	Type	Owner			
+		+	-+			
public	geography_columns	view	regiane			
public	geometry_columns	view	regiane			
public	spatial_ref_sys	table	regiane			
(3 rows)						

geobanco=# \d geography_columns;

View "public.geography_columns"

Column	Type	Collation	Nullable	Default
f_table_catalog	 name	+	+ 	+
f_table_schema	name			
f_table_name	name			
f_geography_column	name			
coord_dimension	integer			
srid	integer			
type	text			

geobanco=# \	\d geometr	y_columns;			
		View "publi	c.geometry_co	olumns"	
Columr	n +	Туре	Collation +	NULLADIE +	Default
f_table_cat f_table_sch f_table_nar f_geometry_ coord_dimen srid type	calog c nema ne _column nsion 	haracter vary name name integer integer character var	ing(256) C ying(30)		
geobanco=# ` Column	\d spatial T Ty	_ref_sys; able "public. pe	spatial_ref_s	sys" Nullable	Default
<pre>srid auth_name auth_srid srtext proj4text Indexes:</pre>	integer characte integer characte characte	r varying(256 r varying(204 r varying(204	 8) 8)	not nul 	
"spatial_	ref_sys_pk raints:	ey" PRIMARY K	EY, btree (si	rid)	
"spatial_	ref_sys_sr	id_check" CHE	CK (srid > 0	AND srid <=	= 998999)

Se vamos trabalhar com dados do tipo raster teremos que adicionar a extensão 'postgis_raster' (versão Postgis >= 3) e duas novas visões serão criadas para auxiliar os elementos espaciais do tipo raster.

Visualizando o que é adicionado pela extensão postgis_raster:

geobanco=# \d raster_columns

View "public.raster columns"

	VICN PUDIIC.	. rabeer_coram		
Column	Туре	Collation	Nullable	Default
+	+	+	+	
r_table_catalog	name			
r_table_schema	name			
r_table_name	name			
r_raster_column	name			
srid	integer			
scale_x	double precisio	on		
scale_y	double precisio	on		
blocksize_x	integer			
blocksize_y	integer			
same_alignment	boolean			

<pre>regular_blocking num_bands pixel_types nodata_values out_db extent spatial_index</pre>	boolean integer text[] double p boolean geometry boolean	precision[] [] Y	 C 	
geobanco=# \d rast Vie	cer_overvie w "public	ews .raster_over	views"	
Column	туре	Collation		Derault
o_table_catalog o_table_schema o_table_name o_raster_column r_table_catalog r_table_schema r_table_name r_raster_column overview_factor	name name name name name name name integer	 default default default		

Como não criamos nenhuma tabela com dados espaciais, as visões estão vazias, a medida que cada tabela com dado espacial é criada, uma entrada é também criada nas respectivas visões seja os elementos do tipo geometry, geography ou raster.

A tabela spatial_ref_sys apresenta 8500 linhas, cada uma representando um diferente SRID e seus textos descritivos em formato WKT SRS e proj4.

Postgis possui geometrias do tipo ponto, linha, área, multiponto, multilinha, multiareas e coleções. Estes entes geométricos podem estar associados a uma componente Z (elevação) e uma componente M (medida), assim as formas possíveis de geometrias são: POINT \rightarrow 'POINT(0 0)' MULTIPOINT \rightarrow 'MULTIPOINT(0 0, 1 1)' POINT Z \rightarrow 'POINTZ(0 0 100)' MULTIPOINT Z \rightarrow 'MULTIPOINTZ(0 0 100, 1 1 123)' POINT M \rightarrow 'POINTM(0 0 1)' MULTIPOINT $M \rightarrow$ 'MULTIPOINTM(0 0 1, 1 1 2)' POINT ZM \rightarrow 'POINTZM(0 0 100 1)' MULTIPOINT ZM \rightarrow 'MULTIPOINTZM(0 0 100 1, 1 1 123 2)' LINESTRING \rightarrow 'LINESTRING(00, 10, 11, 01)' MULTILINESTRING \rightarrow 'MULTILINESTRING((0 0, 1 0), (1 1, 0 1))' LINESTRING Z → 'LINESTRINGZ(0 0 100, 1 0 100, 1 1 100, 0 1 100)' MULTILINESTRING Z → 'MULTILINESTRINGZ((0 0 100, 1 0 100), (1 1 100, 0 1 100))' LINESTRING M \rightarrow 'LINESTRINGM(001, 102, 112, 011)' MULTILINESTRING M \rightarrow 'MULTILINESTRINGM((0 0 1, 1 0 2), (1 1 2, 0 1 1))' LINESTRING ZM → 'LINESTRINGZM(0 0 100 1, 1 0 100 2, 1 1 100 2, 0 1 100 1)' MULTILINESTRING ZM \rightarrow 'MULTILINESTRINGZM((0 0 100 1, 1 0 100 2), (1 1 100 2, 0 1 100 1))' POLYGON \rightarrow 'POLYGON((0 0,1 0,1 1,0 1,0 0))' MULTIPOLYGON → 'MULTYPOLYGON(((0 0,1 0,1 1,0 1,0 0)),((-1 -1,2 -1,2 2, -1 2, -1 -1)))' POLYGON Z → 'POLYGONZ((0 0 100,1 0 100,1 1 100,0 1 100,0 0 100))' MULTIPOLYGON Z → 'MULTYPOLYGONZ(((0 0 100,1 0 100,1 1 100,0 1 100,0 0 100)),((-1 -1 100,2 -1 100,2 2 100, -1 2 100, -1 -1 100)))'

POLYGON M \rightarrow 'POLYGONM((0 0 1,1 0 2,1 1 2,0 1 2,0 0 1))' MULTIPOLYGON M \rightarrow 'MULTYPOLYGONZM(((0 0 100 1,1 0 100 2,1 1 100 2,0 1 100 1,0 0 100 1)),((-1 -1 100 1,2 -1 100 1,2 2 100 1, -1 2 100 1, -1 -1 100 1)))' POLYGON ZM \rightarrow 'POLYGONZM((0 0 100 1,1 0 100 2,1 1 100 2,0 1 100 2,0 0 100 1))' MULTIPOLYGON ZM \rightarrow 'MULTYPOLYGONZ(((0 0 100,1 0 100,1 1 100,0 1 100,0 0 100)),((-1 - 1 100,2 -1 100,2 2 100, -1 -1 100)))' GEOMETRY COLLECTION \rightarrow GEOMETRYCOLLECTION(POLYGON((0 0, 1 0, 1 1, 0 1, 0 0)),POINT(0 0))

A visão geometry_columns agora apresenta a seguinte entrada:

<pre>geoDanCo=# Se f_table_catalog srid type</pre>	f_table_schema	feometry_col f_table_name	UMNS; f_geometry_column	coord_dimensio	on
<pre></pre>	public	pontos	geom		3

Finalizamos saindo do ambiente psql e removendo o banco de dados usando: \$ dropdb geobanco

No escopo deste volume essa é a introdução de SQL e postgis. Postgis é extremamento completo para lidar com dados espaciais e aconselho a leitura de <u>http://postgis.net/stuff/postgis-3.0.0.pdf</u> para aqueles que queiram se aprofundar no assunto.

Neste volume faremos a transações com PostgreSQL/postgis usando R e, a medida que vamos avançando, explicações sobre o que é adicionado no banco de dados serão feitas.

PARTE 5 – Criando o Banco de Dados

5.1 – Criando banco de dados geoespacial

5.1.1 – O banco de dados

A primeira coisa que vamos fazer é montar nosso banco de dados com elementos mínimos para o funcionamento, ou seja, o banco de e extensões.

Tabelas serão implementadas e nos permitirão bastante flexibilidade ao se tornarem um banco base para análises espaciais de dados geológicos.

As extensões postgis_raster e postgis criarão algumas tabelas adicionais para dar suporte a elementos do tipo raster e vector. Falaremos mais delas no decorrer deste guia. Execute os comandos abaixo no terminal monitor criar o banco de dados e sua extensões. Note que fazemos isso sem entrar no ambiente psql usando as diretivas –d para o nome do banco de dados e – c para o comando que é passado entre aspas.

```
$ createdb geobanco --encoding=utf-8
$ psql -d geobanco -c "CREATE EXTENSION postgis;"
$ psql -d geobanco -c "CREATE EXTENSION postgis_raster;"
$ psql -d geobanco -c "ALTER DATABASE geobanco SET
postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';"
```

Nosso banco de dados geoespacial acaba de ser criado. Nas seções seguintes veremos como interagir e colocar dados que serão usados no decorrer deste volume.

5.1.2 – Sistema de Coordenadas do banco de dados

Um aspecto importante em se usar um banco de dados geoespacial é que sempre temos que estarmos atentos a qual sistema de referência de coordenadas (CRS) usaremos. Sempre utilize um único sistema de referência e de preferência use o WGS-84 sempre que possível.

5.2 – Carregando dados geoespaciais no geobanco de dados

5.2.1 – Dados vector

Usando o pacote rgdal podemos abrir diversos formatos do tipo vector e raster e com o pacote rpostgis vamos inserir ou extrair esses objetos no geobanco.

Importando arquivos GIS para o geobanco usando rgdal.

Importando um objeto vector do tipo ponto:

```
> library(rgdal)
> library(raster)
> poços.petróleo<-read0GR(dsn='.',layer='monitor_20190917')
> poços.petróleo
class : SpatialPointsDataFrame
features : 29836
extent : -73.37677, -34.82621, -32.92657, 4.528003 (xmin, xmax, ymin,
ymax)
crs : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
```

: 23 variables : po_o_opera, bacia, bloco, campo, fase, names ativo, ambiente, lda, operado tipo, repeti_es, __in_cio, ... operador, po o anp, cartodb id, objetivo, Acre, A, ABALONE, ABALONE, Des./Prod., min values : 1163IIIBĀ, MAR, 0.0, Alcom, 1A1BA, 1, ERRO!, Direcional, Repetido, 1922/01/01, ... max values : WWFRB001D, Tucano Sul, XA, XERELETE, XERELETE, Exploração, TERRA, nan, Wintershall BM-S-14, 9XRL1DRJS, 29877, Produção, Vertical, Único, 2019/09/12, ...

Reprojetando para UTM WGS84 (SRID 32721):

> poços.repro <- spTransform(poços.petróleo, CRS("+init=epsg:32721"))</pre> > poços.repro class : SpatialPointsDataFrame : 29836 features : -1328101, 3006395, 6345429, 10504165 (xmin, xmax, ymin, ymax) extent : +init=epsg:32721 +proj=utm +zone=21 +south +datum=WGS84 +units=m crs +no_defs +ellps=WGS84 +towgs84=0,0,0 variables : 23 names : po_o_opera, campo, bacia, bloco, fase, ativo, operador, po_o_anp, cartodb_id, objetivo, ambiente, lda, operad tipo, repeti_es, in_cio, ... Acre, min values : 1163IIIBA, A, ABALONE, ABALONE, Des./Prod., MAR, 0.0, 1A1BA, ERRO!, Direcional, Alcom, Repetido, 1922/01/01, ... max values : WWFRB001D, Tucano Sul, XA, XERELETE, XERELETE, Exploração, TERRA, nan, Wintershall BM-S-14, 9XRL1DRJS, 29877, Producão, Vertical, Único, 2019/09/12, ...

Recortando para uma extensão pré definida e plotando:

- > caixa<-extent(250000,320000,9601000,9625000)</pre>
- > poços.final <- crop(poços.repro,caixa)</pre>
- > plot(poços.final, axes=TRUE)

Agora temos nosso objeto reprojetado e recortado para uma extensão qualquer. Vamos dar prosseguimento carregando este objeto vector do tipo ponto no geobanco.

Carregamos agora o objeto vector (poços.final) no banco de dados como uma tabela (pocos) da seguinte maneira (substitua 'você' e 'segredo' pelo seu nome de usuário e senha):

> library(rpostgis)

> con<-dbConnect(PostgreSQL(),dbname='geobanco',user='voce',password='segredo')
> pgInsert(con, name = c("public", "pocos"), data.obj = poços.final)

Se entrarmos no banco de dados com psql veremos: **geobanco=#** \d

geobalico-						
Schema		List of relatic Name	ons Type	Owner		
public public public public public public (6 rows)	geo geo poo ras ras spa	ography_columns ometry_columns cos ster_columns ster_overviews atial_ref_sys	view view table view view table	andre andre andre andre andre andre		
qeobanco=#	t \c	l pocos				
Column		Table "p Type	ublic.poc	cos" Collation	Nullable	Default
po_o_oper bacia bloco campo ativo fase ambiente lda operador po_o_anp cartodb_i objetivo tipo repeti_es in_cio t_rmino conclus_o profundi_ profundi_ profundi_ sonda latitude longitude geom po_o_anp	ra 	<pre>text text text text text text text tex</pre>	.on .on .on .32721) Tase,objet objetivo	l l l l l l l l l l l l l l l l l l l	rom pocos;	
	+	+		+		
9FZ5AAM 9FZ5AM 9PA1AAM 9PA2AM 1LIT1AM 1BRSA1127 (6 rows)	 	Exploração E Exploração E Exploração E Exploração E Exploração P Exploração P	especial especial especial eioneiro eioneiro	Vertical Vertical Vertical Vertical Vertical Vertical		

Agora vamos Importar um objeto vector do tipo linha:

<pre>> library(r</pre>	rgdal)					
> library(raster)						
<pre>> sísmica2d</pre>	pos<-readOGR(dsn='.',layer='2dposc')					
<pre>> sísmica2d</pre>	pos					
class	: SpatialLinesDataFrame					
features	: 140					
extent	: -72, -55, -10, 0.7248806 (xmin, xmax, ymin, ymax)					
crs	: +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0					
variables	: 27					
names	: SURV_NAME, PJOB_NAME, PROC_TYPE,					
PROC_DATE,	SOURCE, COMPANY, JOBCOMP_S, PJOB_S, SURV_TYPE, GEOM_S,					
GEOM_NAME,	KIND, COUNTRY, NUMLINES, LOADDATE,					
min values	: 0026_2D_ITANHAUA_JUMA, 0026_2D_ITANHAUA_JUMA, MIG FIN, 1989-04-					
15, NA,	PUBLIC, 15715521418523971, 157155214, 2D, 157152905,					
0026_ITANHA	.UA_JUMA, CMP, BRASIL, 1, 20180122,					
max values	: R0212_IGARAPE_MARIA, R0212_IGARAPE_MARIA, STK FIN, 2015-06-					
15, NA,	PUBLIC, 9440840218523971, 94408402, 2D Detail, 63607362,					
R0212 IGARA	PE MARIA, Source, BRASIL, 9, 20180122,					

Reprojetando para WGS84 Zona 21S (SRID 32721):

> sis2d.repro <- spTransform(sísmica2dpos, CRS("+init=epsg:32721"))</pre> sis2d.repro class : SpatialLinesDataFrame features : 140 : -1182576, 722496.8, 8870054, 10080423 (xmin, xmax, ymin, ymax) extent : +init=epsg:32721 +proj=utm +zone=21 +south +datum=WGS84 +units=m crs +no defs +ellps=WGS84 +towgs84=0,0,0 : 27 variables SURV_NAME, PJOB NAME, PROC TYPE, names PROC_DATE, SOURCE, COMPANY, JOBCOMP S, PJOB S, SURV TYPE, GEOM S, GEOM_NAME, KIND, COUNTRY, NUMLINES, LOADDATE, min values : 0026_2D_ITANHAUA_JUMA, 0026_2D_ITANHAUA_JUMA, MIG FIN, 1989-04-NA, PUBLIC, 15715521418523971, 157155214, 2D, 157152905, 15, 0026_ITANHAUA_JUMA, CMP, BRASIL, 1, 20180122, ... max values : R0212_IGARAPE_MARIA, R0212_IGARAPE_MARIA, STK FIN, 2015-06-PUBLIC, 9440840218523971, 94408402, 2D Detail, 63607362, 15, NA. R0212_IGARAPE_MARIA, Source, BRASIL, 9, 20180122, ...

Recortando para uma extensão pré definida e plotando:

- > caixa<-extent(250000,320000,9601000,9625000)</pre>
- > sis2d.final <- crop(sis2d.repro,caixa)</pre>
- > plot(sis2d.final, axes=TRUE,lwd=0.2)

Carregamos agora o objeto vector (sis2d.final) no banco de dados como uma tabela (sis2d) da seguinte maneira:

Agora que temos todos os objetos no geobanco vamos mostrar como extrair eles e plotar em um mapa:

Poços petróleo e sísmica

Bem simples a manipulação de dados vector e como usar eles a partir do geobanco. Vamos agora ver como utilizar objetos do tipo raster.

5.2.2 – Dados raster

Da mesma forma que fizemos com objetos vector acima vamos fazer com imagem raster. Vamos carregar imagens raster, recortar e reprojetar para depois carregar no geobanco. Depois vamos ver como extraímos estas imagens do banco de dados de volta para o ambiente R.

Carregando a primeira imagem raster (Imagem de satélite Sentinel2):

```
> library(raster)
Carregando pacotes exigidos: sp
> img<-brick('TCI.tif')
> img
class : RasterBrick
dimensions : 2400, 7000, 16800000, 3 (nrow, ncol, ncell, nlayers)
resolution : 10, 10 (x, y)
extent : 250000, 320000, 9601000, 9625000 (xmin, xmax, ymin, ymax)
```

crs		+proj=u1	cm +zon	e=21	+south	+datum	=WGS84	+units=m	+no_defs
+ellps=WGS8	34	+towgs84	4=0,0,0						
source		/home/ar	ndre/li	vroR/	/TCI.ti	f			
names		TCI.1, 1	FCI.2,	TCI.3	3				
min values		Θ,	Θ,	6)				
max values		255,	255,	255	5				
<pre>> plotRGB(i</pre>	mg	g,stretch	h='lin')					

Carregando a segunda imagem raster (DEM ALOS alta resolução):

> library(raster)								
<pre>> dem<-raster('DEM.tif')</pre>								
> dem								
class : RasterLayer								
dimensions : 778, 2270, 1766060 (nrow, ncol, ncell)								
resolution : 30.837, 30.84833 (x, y)								
extent : 250000, 320000, 9601000, 9625000 (xmin, xmax, ymin, ymax)								
crs : +proj=utm +zone=21 +south +datum=WGS84 +units=m +no_defs								
+ellps=WGS84 +towgs84=0,0,0								
source : /home/andre/livroR/DEM.tif								
names : DEM								
values : -32768, 32767 (min, max)								
> plot(dem,axes=F)								

Carregando as bandas 8 e 4 do Sentinel2:

```
> library(raster)
```

> b4<-raster('B4.tif')</pre>

```
> b8<-raster('B8.tif')</pre>
```

Vamos agora carregar estes objetos (img, dem, b4 e b8) no nosso geobanco em tabelas de nome tci,b4, b8 e dem (demora um pouco, 8 minutos, devido a área e resolução das imagens):

```
> library(rpostgis)
> con<-dbConnect(PostgreSQL(),dbname='geobanco',user='voce',password='segredo')</pre>
> conc-dbconnect(rostgresol(),dbname= geobal
> pgWriteRast(con, c("public", "tci"), img)
> pgWriteRast(con, c("public", "dem"), dem)
> pgWriteRast(con, c("public", "b4"), b4)
> pgWriteRast(con, c("public", "b8"), b8)
E agora lendo os rasters do geobanco para objetos no ambiente R:
> library(RPostgreSQL)
> library(rpostgis)
> library(raster)
> con<-dbConnect(PostgreSQL(),dbname='geobanco',user='voce',password='segredo')
> imgdb<-pgGetRast(con,"tci",bands=TRUE)</pre>
> imgdb
class
             : RasterStack
dimensions : 2400, 7000, 16800000, 3 (nrow, ncol, ncell, nlayers)
resolution : 10, 10 (x, y)
             : 250000, 320000, 9601000, 9625000 (xmin, xmax, ymin, ymax)
extent
              : +proj=utm +zone=21 +south +datum=WGS84 +units=m +no defs
crs
+ellps=WGS84 +towqs84=0,0,0
            : TCI.1, TCI.2, TCI.3
names
min values :
                  19,
                            35,
                                    50
                  255,
max values :
                           255,
                                   255
> demdb<-pgGetRast(con,"dem",bands=TRUE)</pre>
> demdb
class
             : RasterLayer
dimensions : 778, 2270, 1766060 (nrow, ncol, ncell)
resolution : 30.837, 30.84833 (x, y)
extent : 250000, 320000, 9601000, 9625000 (xmin, xmax, ymin, ymax)
              : +proj=utm +zone=21 +south +datum=WGS84 +units=m +no defs
crs
+ellps=WGS84 +towgs84=0,0,0
source
           : memory
             : DEM
names
             : -78, 115 (min, max)
values
> b4db<-pgGetRast(con, "b4", bands=TRUE)</pre>
> b4db
class
             : RasterLayer
dimensions : 2400, 7000, 16800000 (nrow, ncol, ncell)
resolution : 10, 10 (x, y)
             : 250000, 320000, 9601000, 9625000 (xmin, xmax, ymin, ymax)
extent
              : +proj=utm +zone=21 +south +datum=WGS84 +units=m +no defs
crs
+ellps=WGS84 +towgs84=0,0,0
source
             : memory
             : B4
names
             : 267, 13697 (min, max)
values
> b8db<-pgGetRast(con, "b8", bands=TRUE)</pre>
> b8db
             : RasterLayer
class
dimensions : 2400, 7000, 16800000 (nrow, ncol, ncell)
resolution : 10, 10 (x, y)
extent : 250000, 320000, 9601000, 9625000 (xmin, xmax, ymin, ymax)
             : +proj=utm +zone=21 +south +datum=WGS84 +units=m +no defs
crs
```
+ellps=WGS84 +towgs84=0,0,0 source : memory names : B8 values : 1, 13623 (min, max)

Checando agora o banco de dados e as visões (views) temos:

geobanco=# \d

Jeobanco-# \a								
	List of relations							
Schema	Name	l Type	Owner					
	+	++	+					
public	b4	table	andre					
public	b4_rid_seq	sequence	andre					
public	b8	table	andre					
public	b8_rid_seq	sequence	andre					
public	dem	table	andre					
public	dem_rid_seq	sequence	andre					
public	geography_columns	view	andre					
public	geometry_columns	view	andre					
public	pocos	table	andre					
public	raster_columns	view	andre					
public	raster_overviews	view	andre					
public	sis2d	table	andre					
public	spatial_ref_sys	table	andre					
public	tci	table	andre					
public	tci_rid_seq	sequence	andre					
(15 rows)	15 rows)							

geobanco=# select * from geometry_columns

f_table_catalog srid type	f_table_schema	f_table_name	e f_geometry_c	olumn coord_di	mension
+		-+	+		
geobanco 32721 POINT	public	pocos	geom	I	2
geobanco 32721 MULTILINE (2 rows)	public STRING	sis2d	geom	I	2
<pre>geoDanco=# Se r_table_catalog scale_y num_bands p extent spatial index</pre>	elect ^ Irom r_table_schema blocksize_x pixel_types	raster_colt r_table_nam blocksize_y nodata_values	lmns; e r_raster_col same_alignment out_db	umn srid regular_blockir	scale_x ng
+	++-	-+		+ +	
geobanco 10 - 3 {32BUI,32BUI, 0103000020D17F000 0B55B624100000000 00000000FD4F6241	<pre>+ public -10 100 32BUI} {0,0,0} 00010000000500000 0008813410000000 t</pre>	 tci 100 {f,f, 00000000808403 B55B6241000000	rast t f} E4100000000FD4F6 0000881341000000	32721 f 2410000000080840 00FD4F6241000000	 0080840E41
geobanco 30.8370044053 - 1 {32 0103000020D17F000 0B55B624114020000 1200000FD4F6241	public -30.8483290488 2BSI} 00010000000500000 0008813410000000 t	dem 100 {-99999} 0000000080840 B55B6241140200	rast 100 t {f} E4112000000FD4F6 0000881341120000	32721 f 2410000000080840 00FD4F6241000000)E410000000)0080840E41
geobanco 10 - 1 {32BUI} 0103000020D17F000	public -10 100 {0}	b4 100 {f}	rast t E410000000000004F6	32721 f 2410000000080840)E410000000

```
0B55B62410000000008813410000000B55B624100000008813410000000FD4F624100000008840E41
0000000FD4F6241 | t
                | public
geobanco
                                                                   32721 |
                                 | b8
                                               | rast
                                                                 100 |
               -10 |
                                          100 | t
10 |
                                                               | f
1 | {32BUI}
                                       | {f}
                        {0}
0103000020D17F0000010000000500000000000000080840E4100000000FD4F6241000000080840E410000000
0B55B62410000000008813410000000B55B6241000000008813410000000FD4F6241000000008840E41
00000000FD4F6241
                1 t.
(4 rows)
```

Como podem ver, os elementos espaciais adicionados estão presentes também nas 'views' de informação do geobanco.

Vamos agora ver como carregar outros formatos de dados espaciais no geobanco de dados.

5.3 – Dados de Campo em geral

Vamos agora falar sobre como armazenar no geobanco informações espaciais obtidas através de coleta de dados de subsuperfície (sondagens em geral), de geoquímica de amostras e geofísicas de superfície /poços.

O objetivo e ilustrar como o processo pode ser feito. Num geobanco real, o design do banco de dados , estruturação das tabelas e intercorrelação entre a informação é mais minuciosa.

Ao criarmos campos de geometrias nesta seção, estamos definindo um SRID. Usando 32721 que corresponde ao WGS-84 UTM Zona 21S.

5.3.1 – Dados de sondagem

Na indústria mineral e também na área de exploração de petróleo e gás temos a presença constante de dados oriundos de perfurações e sondagens.

Vamos aqui criar um modelo de tabelas para o armazenamento de informações oriundas de programas de sondagem em exploração mineral. A primeira tabela a ser criada será a dos cabeçalhos ou **collar** dos poços:

holeid	varchar(30)
c_projeto	varchar(30)
c_area	varchar(30)
c_target	varchar(30)
C_X	numeric(12,2)
c_y	numeric(12,2)
C_Z	numeric(6,2)
c_srid	integer
c_az	numeric(5,2)
c_dip	numeric(5,2)
c_td	numeric(6,2)
c_rig	varchar(30)
c_drillco	varchar(30)
c_inicio	date
c_fim	date

Agora vamos criar uma tabela com a informação da perfilagem espacial (survey) destes poços:holeidvarchar(30)s_estacaointeger

S_X	numeric(12,2)
s_y	numeric(12,2)
s_depth	numeric(6,2)
s_az	numeric(5,2)
s_dip	numeric(5,2)
s_diam	varchar(30)
s_coment	text

Tabela dos dados de descrição (**log**) dos testemunhos destes poços:

holeid	varchar(30)
l_from	numeric(6,2)
l_to	numeric(6,2)
l_rcode	varchar(10)
l_desc	text
l_dia	varchar(30)
l_sample	varchar(30)
l_batch	varchar(30)

Uma tabela da descrição geotécnica (geotec) dos testemunhos:

	, ,	
holeid	varchar(30)	
g_from	numeric(6,2)	
g_to	numeric(6,2)	
g_avc	numeric(6,2)	
g_rec	numeric(4,2)	
g_box	varchar(30)	
g_sum10	numeric(4,2)	
g_frac	integer	

Uma tabela de resultados de geoquímica (assay):

holeid	varchar(30)
noicid	varchar(50)
a_from	numeric(6,2)
a_to	numeric(6,2)
a_sample	varchar(30)
a_batch	varchar(30)
a_dispatch	varchar(30)
a_elem	varchar(10)
a_valor	numeric(9,3)
a_unidade	varchar(30)

Uma tabela com os resultados das amostras de checagem (**qaqc**):

holeid	varchar(30)
q_aliq	varchar(30)
q_sample	varchar(30)
q_batch	varchar(30)
q_dispatch	varchar(30)
q_elem	varchar(10)
q_valor	numeric(9,3)
q_unidade	varchar(30)

Uma tabela para os dados de geofísica de poço (**dhd**):holeidvarchar(30)d_curvevarchar(30)

d_depth	numeric(6,2)
d_value	numeric(12,2)

Criando essas tabelas no banco de dados geobanco:

```
> library(RPostgreSQL)
> con<-dbConnect(PostgreSQL(),host="127.0.0.1",user="voce",password="segredo",</p>
dbname="geobanco")
> sql<-"CREATE TABLE collar (holeid varchar(30) PRIMARY KEY,c_projeto</p>
varchar(30) NOT NULL, c_area varchar(30) NOT NULL,c_target varchar(30) NOT
NULL,geom GEOMETRY(POINTZ,32721),c_srid integer NOT NULL,c_az numeric(5,2) NOT
NULL,c_dip numeric(5,2) NOT NULL,c_td numeric(6,2), c_rig varchar(30),
c_drillco varchar(30),c_inicio date,c_fim date);"
> dbGetQuery(con,sql)
> sql<-"CREATE TABLE survey (holeid varchar(30) NOT NULL,s_estacao integer NOT</p>
NULL, s x numeric(12,2) NOT NULL, s y numeric(12,2) NOT NULL, s depth numeric(6,2)
NOT NULL, s_az numeric(5,2) NOT NULL,s_dip numeric(5,2) NOT NULL,s diam
varchar(30), s coment text);"
> dbGetQuery(con,sql)
> sql<-"CREATE TABLE log (holeid varchar(30) NOT NULL, l_from numeric(6,2) NOT</pre>
NULL,l_to numeric(6,2) NOT NULL, l_rcode varchar(10), l_desc text, l_dia
varchar(30),l sample varchar(30),l batch varchar(30));"
> dbGetQuery(con,sql)
> sql<-"CREATE TABLE geotec (holeid varchar(30) NOT NULL, g_from numeric(6,2)</p>
NOT NULL,g_to numeric(6,2) NOT NULL,g_avc numeric(6,2), g_rec
numeric(4,2),g_box varchar(30), g_sum10 numeric(4,2),g_frac integer);"
> dbGetQuery(con,sql)
> sql<-"CREATE TABLE assay (holeid varchar(30) NOT NULL, a_from numeric(6,2)
NOT NULL,a_to numeric(6,2) NOT NULL,a_sample varchar(30) NOT NULL, a_batch
varchar(30) NOT NULL, a dispatch varchar(30) NOT NULL, a elem varchar(\overline{10}) NOT
NULL,a valor numeric(9,3),a unidade varchar(30));"
> dbGetQuery(con,sql)
> sql<-"CREATE TABLE gagc (holeid varchar(30) NOT NULL, q aliq varchar(30) NOT</p>
NULL, q_sample varchar(30) NOT NULL, q_batch varchar(30) NOT NULL, q_dispatch
varchar(30) NOT NULL, q elem varchar(\overline{10}) NOT NULL, q valor numeric(\overline{9}, 3),
q_unidade varchar(30));"
  dbGetQuery(con,sql)
> sql<-"CREATE TABLE dhd (holeid varchar(30) NOT NULL, d_curve varchar(30) NOT</pre>
NULL,d_depth numeric(6,2) NOT NULL,d_value numeric(12,2));"
> dbGetQuery(con,sql)
> sql<-"CREATE INDEX ON dhd (holeid);"</pre>
> dbGetQuery(con,sql)
```

Inserindo dados

Uma vez criadas as tabelas, vamos inserir os dados nelas. Inserindo os dados dos furos nas respectivas tabelas.

```
> hd<-read.csv('collarA.csv',stringsAsFactors=FALSE)
> for (i in 1:14){
+ sql<-paste0("INSERT INTO collar (holeid,c_projeto,c_area, c_target,geom,
c_srid,c_az,c_dip,c_td,c_rig, c_drillco,c_inicio,c_fim)
VALUES('",hd[i,"holeid"], "','",hd[i,"projeto"], "','",hd[i,"area"],
"','",hd[i,"target"], "',ST_GeomFromText('POINT(",hd[i,"x"]," ",hd[i,"y"],"
",hd[i,"z"],")',32721)",",",hd[i,"srid"],",",hd[i,"az"],
",",hd[i,"dip"],",",hd[i,"td"],",'",hd[i,"rig"],"','",hd[i,"drillco"],"','",hd[i,"inicio"],"','",hd[i,"fim"],"');")
+ dbSendQuery(con,sql)
+ }
> tmp<-read.csv('surveyA.csv',stringsAsFactors=FALSE)</pre>
```

> dbWriteTable(con, "survey", tmp, row.names=FALSE, append=TRUE) > tmp<-read.csv('logA.csv',stringsAsFactors=FALSE) > dbWriteTable(con, "log", tmp, row.names=FALSE, append=TRUE) > tmp<-read.csv('geotechA.csv',stringsAsFactors=FALSE) > dbWriteTable(con, "geotec", tmp, row.names=FALSE, append=TRUE) > tmp<-read.csv('assayAL.csv',stringsAsFactors=FALSE) > dbWriteTable(con, "assay", tmp, row.names=FALSE, append=TRUE) > tmp<-read.csv('qaqcAL.csv',stringsAsFactors=FALSE) > dbWriteTable(con, "geotec", tmp, row.names=FALSE, append=TRUE) > tmp<-read.csv('qaqcAL.csv',stringsAsFactors=FALSE) > dbWriteTable(con, "geotec", tmp, row.names=FALSE, append=TRUE)

> dbWriteTable(con, "qaqc", tmp, row.names=FALSE, append=TRUE)

Inserindo os dados LAS na tabela 'dhd'.

```
> inserirLas<-function(archivo){</pre>
+ line<-""
+ argui<-paste0(archivo,'.csv')</pre>
+ las.data<-read.csv(arqui)
+ cat(line, file="templas.csv", append=FALSE, sep = '')
+ for(i in 2:ncol(las.data)){
  for(j in 1:nrow(las.data)){
+ line2<-paste0(' ',archivo,',',names(las.data)
[i],",",las.data[j,1],",",las.data[j,i])
+ cat(line2, file="templas.csv", append=TRUE, sep = "\n")</pre>
   }
+
+ }
+ system("psql -c \"\\COPY dhd FROM 'templas.csv'
+ delimiter ',' csv NULL 'NA';\" -U <u>user</u> geobanco")
+ }
> inserirLas('PBAT-10-02')
> inserirLas('PBAT-10-05')
> inserirLas('PBAT-11-03')
> inserirLas('PBAT-11-07')
> inserirLas('PBAT-11-08')
> inserirLas('PBAT-11-09')
> inserirLas('PBAT-11-10')
> inserirLas('PBAT-11-11')
> inserirLas('PBAT-11-12')
  inserirLas('PBAT-12-13'
```

Todas as tabelas do geobanco: **geobanco=#** \d

List of relations				
Schema	Name	Type	Owner	
oublic		 table	andre	
public	b4	ltable	andre	
public	b4 rid seq	sequence	andre	
public	b8	table	andre	
public	b8 rid seq	sequence	andre	
public	collar	table	andre	
public	dem	table	andre	
public	dem rid seq	sequence	andre	
public	dhd	table	andre	
public	geography_columns	view	andre	
public	geometry_columns	view	andre	
public	geotec	table	andre	
public	log	table	andre	
public	pocos	table	andre	
public	qaqc	table	andre	
public	raster_columns	view	andre	
public	raster_overviews	view	andre	
public	sis2d	table	andre	

public	spatial_ref_sys	table	andre
public	survey	table	andre
public	tci	table	andre
public	tci_rid_seq	sequence	andre
(22 rows)			

PARTE 6

6.1 – Integração de dados geológicos e análise espacial

Vamos mostrar como é feita uma análise espacial de dados de exploração mineral com base nos dados adicionados na parte anterior e avaliação inicial de recurso.

6.1.1 - Dados na superfície

Visualizando dados de superfície tais como localização de furos, imagens de satélite, DEM, etc:

```
> library(raster)
> library(rpostgis)
  con<-dbConnect(PostgreSQL(),host="127.0.0.1",user="voce",password="segredo",</pre>
dbname="geobanco")
> dem<-pgGetRast(con,"dem")
> sent<-pgGetRast(con,"tci",bands=TRUE)
> b4<-pgGetRast(con,"b4")</pre>
> b8<-pgGetRast(con,"b8")</pre>
> sql<-"select st_x(geom) as x, st_y(geom) as y,st_z(geom) as z,</pre>
holeid, c_projeto,c_target,c_area,c_dip, c_az, c_td,c_rig,c_drillco,
c_inicio,c_fim from collar;
   furos<-dbGetQuery(con,sql)
  coordinates(furos)<-~x+y+z</pre>
> gradient<-terrain(dem,opt='slope',unit='radians')
> aspect<-terrain(dem,opt='aspect',unit='radians')</pre>
> relevo<-hillShade(gradient,aspect,angle=45,direction=270,normalize= TRUE)</p>
> par(mfrow=c(4,1))
> plotRGB(sent,r=3,g=2,b=1,stretch='lin')
> plot(relevo,axes=FALSE,col=grey(0:100/100),legend=FALSE)
> plot(dem,axes=FALSE,legend=FALSE)
  plot(furos,cex=1,pch=20,col='red')
```


Plotando informações sobrepostas gerando um mapa superficial:

dev.off() plotRGB(sent,r=3,g=2,b=1,stretch='lin') plot(relevo,add=TRUE,alpha=0.4,col=grey(0:100/100),legend=FALSE) plot(furos,add=TRUE,cex=1,pch=20,col='red') text(furos,label=furos\$holeid,pos=1,cex=0.4,col='white')

Visualizando NDVI e sombra de relevo. (Avaliação de terrenos, ambiental e acessos):

- ndvi<-(b8-b4)/(b8+b4)
- plot(ndvi,legend=FALSE,axes=FALSE,zlim=c(0,1))
 plot(relevo,add=TRUE,alpha=0.4,col=grey(0:100/100),legend=FALSE)

6.1.2 - Estruturando informação em espaço tridimensional

Vamos agora mostrar como colocar informações no contexto tridimensional. Para isso usaremos a informação do colar dos furos e a informação do perfilamento de desvio destes furos. Tratam-se de furos verticais ou bem próximo do vertical mas o método é demostrado sendo mais perceptível para furos inclinados.

Primeiro criamos dois data.frames que serão usadas para gerar a informação de coordenadas tridimensionais dentro de qualquer furo na profundidade informada.

Criando os dois data.frames (colar e estacoes):

library(raster)

```
library(rpostgis)
 con<-dbConnect(PostgreSQL(),host="127.0.0.1",user="voce",password="segredo",</pre>
dbname="geobanco")
 sql<-"select st_x(geom) as x, st_y(geom) as y,st_z(geom) as z,</pre>
holeid, c_projeto,c_target,c_area,c_dip, c_az, c_td,c_rig,c_drillco,
c_inicio,c_fim from collar;"
> furos2<-dbGetQuery(con,sql)</pre>
> colar<-data.frame(furo=furos2$holeid,prof=0,x=furos2$x,y=furos2$y,z=furos2$z,</p>
mergulho=furos2$c dip, az=furos2$c az)
> sql<-"SELECT * FROM survey;"</pre>
> su<-dbGetQuery(con,sql)</pre>
> estacoes<-data.frame(furo=su$holeid,prof=su$s depth,x=NA,y=NA,z=NA,</p>
mergulho=su$s dip,az=su$s az)
> head(colar, n=1L)
                                  y z mergulho az
         furo prof
                 0 271624 9614442 22
1 PBAT-10-01
                                             0 - 90
> head(estacoes, n=1L)
         furo prof x y z mergulho az
                 0 NA NÁ NA
  PBAT-10-01
                                      0 - 90
```

Os dois data.frames possuem as colunas idênticas. A data.frame colar contem informações tridimensionais da boca de cada furo e a data.frame contem informação de cada ponto de desvio perfilado em cada furo de sonda. As coordenadas 3D destes pontos ainda não foram calculadas.

Vamos calcular estas coordenadas usando a função abaixo:

```
> tresD<-function(da,es){</pre>
linha<-data.frame()</pre>
for(i in 1:nrow(da)){
x<-da[i,3]
  y<-da[i,4]
  z<-da[i,5]</pre>
  di<-0
  fur<-es[es[[1]]==da$furo[[i]],]</pre>
  fur<-fur[order(fur$prof),]</pre>
  for(j in 1:nrow(fur)){
   angulo<-fur[j,7]</pre>
   d<-fur[j,2]-di
   di<-d+di
   deltaz<-abs(d*sin(fur[j,6]*pi/180))</pre>
   raio<-d*cos(fur[j,6]*pi/180)</pre>
   x<-round(x+raio*sin(angulo*pi/180))</pre>
   y<-round(y+raio*cos(angulo*pi/180))</pre>
   z<-round(z-deltaz)</pre>
   linha<-
rbind(linha,data.frame(furo=fur[j,1] ,prof=fur[j,2],x=x ,y=y ,z=z,mergulho=fur[
i,6],az=fur[j,7]))
   z<-z
  }
 lin<-rbind(linha,da)</pre>
 lin<-lin[order(lin$furo,lin$prof),]</pre>
 return(lin)
```

E usando os dois data.frames como argumento da função tresD teremos:

> pts.XYZ<-tresD(colar,estacoes)</pre>

Com o data.frame criado pela função tresD podemos agora obter coordenadas 3D de qualquer ponto dentro de qualquer furo de sonda usando a função obterXYZ abaixo usando como argumento nosso data.frame acima criado, o ID do furo e a profundidade no furo:

Agora estamos prontos para botar em prática o posicionamento tridimensional de informações de furos de sondagem.

Vamos usar a informação de amostras para análises químicas do arquivo log e georreferenciar as mesmas em 3D.

Criando o data.frame *amostras* com a informação necessária:

E finalmente calculando a localização central de cada amosta em espaço tridimensional:

Vamos plotar as amostras agora usando

```
> library(plot3D)
> par(mfrow=c(2,2))
> scatter3D(amostras$x,amostras$y,amostras$z,theta=25,phi=20,colkey=FALSE,
zlim=c(-950,-300))
> scatter3D(amostras$x,amostras$y,amostras$z,theta=65,phi=20,colkey=FALSE,
zlim=c(-950,-300))
> scatter3D(amostras$x,amostras$y,amostras$z,theta=95,phi=20,colkey=FALSE,
zlim=c(-950,-300))
> scatter3D(amostras$x,amostras$y,amostras$z,theta=95,phi=5,colkey=FALSE, zlim=
c(-950,-300))
```


Agora que temos a localização tridimensional das amostras vamos carregar o resultado das análises químicas nesse data.frame.

Primeiro carregamos os dados:

1	0.53	1.4	57.5	1.7	99.56	0.82
	a_valor.nacl	a_valor.mgcl2	a_valor.ca	so4 a_valor.	k2o a_valor.n	na2o a_valor.mgo
1	96.56	0.05		1.8 0	.52 5	51.2 0.02
	a_valor.cao	a_valor.br a_v	alor.k2o1 a	_valor.na2o1	a_valor.mgoi	L a_valor.cao1
1	0.74	8	NA	NA	NA	A NA
	a_valor.s a_	valor.moist				
1	NA	0.1				

6.1.3 Recursos Minerais usando poligonais

Neste formato os dados estão prontos serem analisados espacialmente. Vamos ver um simples exemplo a seguir usando poligonais para calculo de recursos. Vamos criar uma tabela com o intervalo onde o teor médio total de cada furo respeita um cut-off de 5% Kcl. Primeiro criando um data.frame com todos os furos e com teores zerados e outro com os furos com teor de KCl > 5% que substituirá o valor destes do data.frame zerado original:

```
> library(data.table)
> res_fure_setDT(ar[which
```

```
res.furo<-setDT(ar[which( ar$a_valor.kcl>=0),])[,.(x=mean(x),y=mean(y),
z=mean(z), esp.total=max(a_to)-min(a_from),esp.minerio=sum(a_to-a_from),
k=sum(a_valor.k*(a_to-a_from)/sum(a_to-a_from)),kcl=sum(a_valor.kcl*(a_to-
a_from)/sum(a_to-a_from)), k2o=sum(a_valor.k2o*(a_to-a_from)/sum(a_to-
a_from)) = mix (a_valor.k2o*(a_to-a_from)) = mix (a_to-a_from)/sum(a_to-a_from))
a_from)),ri=sum(a_valor.ri*(a_to-a_from)/sum(a_to-a_from))),                  by=holeid.x]
  res.furo
       holeid.x
                                             z esp.total esp.minerio
    PBAT-10-01 271624 9614442
                                   -750.7018
                                                    18.00
                                                                  18.00 0.4961056
                                                                  13.89 2.8186969
 2: PBAT-10-02 279340 9612680 -819.7221
                                                    13.89
 3: PBAT-10-05 280941 9613595
                                   -819.2750
                                                     8.15
                                                                   8.15 0.5000245
 4: PBAT-11-07 283527 9615862
                                   -844.1619
                                                     5.71
                                                                   5.71 0.2111384
 5: PBAT-11-06 284922 9612434
                                   -847.3917
                                                     6.15
                                                                   6.15 0.1143089
 6: PBAT-11-08 275640 9612999 -766.9870
                                                     8.05
                                                                   8.05 0.1452174
                                                                         5.3082597
 7: PBAT-11-09 278503 9611094
                                   -817.0330
                                                     7.47
                                                                   7.47
 8: PBAT-11-03 280109 9610844
                                                                   5.91 3.5108291
                                   -826.5229
 9: PBAT-11-10 278079 9612824
                                                     9.60
                                   -783.4813
                                                                   9.60 0.8774688
10: PBAT-11-11 276498 9610863
                                                     7.87
                                   -795.2580
                                                                   7.87 0.1048666
                                                                  11.41 4.0285802
11: PBAT-11-12 279514 9614695 -800.9001
                                                    11.41
12: PBAT-12-13 282202 9611053 -882.1034
                                                     8.48
                                                                   8.48 0.4192571
13: PBAT-12-14 277513 9615481 -740.0872
                                                     8.00
                                                                   8.00 0.2240500
14: PBAT-12-15 279144 9616715 -738.9640
                                                    10.51
                                                                  10.51 3.8773454
             kcl
                         k2o
                                      ri
      0.9463778 0.6017833 2.5332778
 1:
 2:
     5.3742981 3.3956803 1.4159827
     0.9526258 0.6025153 2.4042945
 3:
     0.4011909 0.2544133 0.5714536
 5:
     0.2174309 0.1372846 1.0626016
     0.2761491 0.1751677 0.4942857
 6:
     10.1229853 6.3949665 1.5859438
 7:
 8:
     6.6958037 4.2298985 2.6553299
      1.6749063 1.0578646 1.1578125
 9:
10:
     0.1967980 0.1258069 0.8509530
11:
      7.6855127 4.8547853 1.6215600
     0.7995401 0.5058373 1.3137972
12:
      0.4245375 0.2684625 0.8173750
13:
14:
      7.3966508 4.6724643 3.0641294
> res.furo[,5:10]<-0</pre>
  res.furo
      holeid.x
                                            z esp.total esp.minerio k kcl k2o ri
    PBAT-10-01 271624 9614442
                                   -750.7018
                                                        0
                                                                       00
                                                                              0
                                                                                      0
 2: PBAT-10-02 279340 9612680
                                                                       0 0
                                                                                  0
                                   -819.7221
                                                        0
                                                                              0
                                                                                      0
                                                                       0
                 280941 9613595
                                                        0
                                                                         0
                                                                              0
                                                                                  0
                                                                                      0
 3: PBAT-10-05
                                   -819.2750
                 283527 9615862
                                                        0
                                                                       0
                                                                         0
                                                                              0
                                                                                  0
                                                                                      0
    PBAT-11-07
                                   -844.1619
 4:
                                                                       00
    PBAT-11-06 284922 9612434
                                   -847.3917
                                                                              0
                                                                                  0
                                                                                      0
 5:
    PBAT-11-08 275640 9612999
                                                                       0 0
                                                                              0
 6:
                                   -766.9870
```

/: PBAI-II-09 2/8503 9011094 -81/.0330	Θ	
8: PBAT-11-03 280109 9610844 -826.5229	Θ	00000
9: PBAT-11-10 278079 9612824 -783.4813	Θ	0 0 0 0 0
10: PBAT-11-11 276498 9610863 -795.2580	Θ	0 0 0 0 0
11: PBAT-11-12 279514 9614695 -800.9001	Θ	0 0 0 0 0
12: PBAT-12-13 282202 9611053 -882.1034	Θ	0 0 0 0 0
13: PBAT-12-14 277513 9615481 -740.0872	Θ	0 0 0 0 0
14: PBAT-12-15 279144 9616715 -738.9640	Θ	00000
> res.furo2<-setDT(ar[which(ar\$a_valor.	kcl>=5),])[,.(x:	=mean(x), y=mean(y),
<pre>z=mean(z),esp.total=max(a_to)-min(a_from</pre>),esp.minerio=s	um(a_to-a_from),
k=sum(a_valor.k*(a_to-a_from)/sum(a_to-a	_from)),kcl=sum	(a_valor.kcl*(a_to-
<pre>a_from)/sum(a_to-a_from)), k2o=sum(a_val</pre>	or.k2o*(a_to-a_`	from)/sum(a_to-
<pre>a_from)),ri=sum(a_valor.ri*(a_to-a_from)</pre>	/sum(a_to-a_from	n))), by=holeid.x]
> res.furo2		
holeid.x x y ze	sp.total esp.mi	nerio k kcl
1: PBAT-10-02 279340 9612680 -815.6178	1.66	1.66 18.84602 35.94229
2: PBAT-10-05 280941 9613595 -818.4500	0.44	0.44 3.42500 6.53500
3: PBAT-11-09 278503 9611094 -815.9675	1.82	1.82 20.94462 39.94500
4: PBAT-11-03 280109 9610844 -826.0021	1.37	1.37 14.04161 26.78394
5: PBAT-11-10 278079 9612824 -782.1225	0.43	0.43 10.42233 19.87279
6: PBAT-11-12 279514 9614695 -799.5696	2.07	2.07 20.46043 39.02338
7: PBAT-12-15 279144 9616715 -738.0264	2.06	2.06 17.03107 32.48296
k2o ri		
1: 22.70663 3.5307229		
2: 4.13000 1.2500000		
3: 25.23473 2.3098901		
4: 16.91942 2.0270073		
5: 12.55349 0.4139535		
6: 24.65169 0.5536232		
7: 20.51990 4.1805825		
<pre>> setDT(res.furo)[res.furo2, esp.total :</pre>	= i.esp.total ,	on =.(holeid.x)]
setNT(res turo) res turo? ese minerio		
	:= 1.esp.miner.	10, on =.(noteid.x)]
<pre>> setDT(res.furo)[res.furo2, k := i.k ,</pre>	on =.(holeid.x)	[0, on =.(noteid.x)]
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc</pre>	<pre>i= i.esp.miner. on =.(holeid.x) l, on =.(holeid</pre>	lo , on =.(notera.x)]] .x)]
<pre>> setDT(res.furo)[res.furo2, esp.miner10 > setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kco, > setDT(res.furo)[res.furo2, k2o:=i.k2o,</pre>	on =. (holeid.x) l, on =. (holeid.x)	(notera.x)]] .x)]
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o</pre>	<pre>interpriminer: on =.(holeid.x) l, on =.(holeid.x) on =.(holeid.x)]</pre>	(notera.x)] .x)])]
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>interpriminer: on =. (holeid.x) l, on =. (holeid.x) on =. (holeid.x)]</pre>	inorria
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1. DPAT 10 01 271624 0614442 750 7018</pre>	<pre>i= i.esp.miner; on =. (holeid.x); l, on =. (holeid.x); on =. (holeid.x)] esp.total esp.m;</pre>	inerio k kcl
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>i= i.esp.miner; on =. (holeid.x); l, on =. (holeid.x); on =. (holeid.x)] esp.total esp.m: 0.00 1.66</pre>	inerio k kcl
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>i= 1.esp.miner: on =. (holeid.x) l, on =. (holeid.x) n =. (holeid.x)] esp.total esp.m: 0.00 1.66 0.44</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4. PDAT 11 07 292527 0615962 944 1610</pre>	<pre>i= 1.esp.miner: on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m: 0.00 1.66 0.44 0.00</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5. PBAT 11 06 284022 0612434 847 3017</pre>	<pre>i= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m; 0.00 1.66 0.44 0.00 0.00</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>i= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 0.00</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 278503 9611094 -817 0330</pre>	<pre>:= 1.esp.miner. on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m:</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-09 278503 9611094 -817.0330 8: PBAT-11-03 280109 9610844 -826 5229</pre>	<pre>i= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14 04161 26 78394
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, k := i.kc, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-09 278503 9611094 -817.0330 8: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783 4813</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m: 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10 42233 10 87270
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-11 276498 9610863 -795 2580</pre>	<pre>i= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m: 0.00 1.66 0.44 0.00 0.00 0.00 0.00 1.82 1.37 0.43 0.00</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-11 276498 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800 9001</pre>	<pre>i= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m: 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20 46043 39 02338
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kco, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-09 278503 9611094 -817.0330 8: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-11 276498 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882 1034</pre>	<pre>i= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kco, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 280109 9610844 -826.5229 9: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-11 276498 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882.1034 13: PBAT-12-14 277513 9615481 -740.0872</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 0.00 0.00000 0.00000</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-11 276498 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882.1034 13: PBAT-12-14 277513 9615481 -740.0872 14: PBAT-12-15 279144 9616715 -738.9640</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.07</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-11 276498 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882.1034 13: PBAT-12-14 277513 9615481 -740.0872 14: PBAT-12-15 279144 9616715 -738.9640</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.06</pre>	inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-09 278503 9611094 -817.0330 8: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-12 279514 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882.1034 13: PBAT-12-14 277513 9615481 -740.0872 14: PBAT-12-15 279144 9616715 -738.9640</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m: 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.07</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m: 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.07</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); n =. (holeid.x)] esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.06</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-09 278503 9611094 -817.0330 8: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-11 276498 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882.1034 13: PBAT-12-14 277513 9615481 -740.0872 14: PBAT-12-15 279144 9616715 -738.9640</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.06</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k:= i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, kcl := i.kco, > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-09 278503 9611094 -817.0330 8: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882.1034 13: PBAT-12-14 277513 9615481 -740.0872 14: PBAT-12-15 279144 9616715 -738.9640</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.06</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.06</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k , > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.07</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>
<pre>> setDT(res.furo)[res.furo2, k := i.k, > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, kcl := i.kc > setDT(res.furo)[res.furo2, k20:=i.k20, > setDT(res.furo)[res.furo2, ri:=i.ri, o > res.furo holeid.x x y z 1: PBAT-10-01 271624 9614442 -750.7018 2: PBAT-10-02 279340 9612680 -819.7221 3: PBAT-10-05 280941 9613595 -819.2750 4: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-07 283527 9615862 -844.1619 5: PBAT-11-06 284922 9612434 -847.3917 6: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-08 275640 9612999 -766.9870 7: PBAT-11-09 278503 9611094 -817.0330 8: PBAT-11-03 280109 9610844 -826.5229 9: PBAT-11-10 278079 9612824 -783.4813 10: PBAT-11-11 276498 9610863 -795.2580 11: PBAT-11-12 279514 9614695 -800.9001 12: PBAT-12-13 282202 9611053 -882.1034 13: PBAT-12-14 277513 9615481 -740.0872 14: PBAT-12-15 279144 9616715 -738.9640</pre>	<pre>:= 1.esp.miner; on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); l, on =. (holeid.x); esp.total esp.m; 0.00 1.66 0.44 0.00 0.00 0.00 1.82 1.37 0.43 0.00 2.07 0.00 0.00 2.07 0.00 2.06</pre>	<pre>inerio k kcl 0.00 0.00000 0.00000 1.66 18.84602 35.94229 0.44 3.42500 6.53500 0.00 0.00000 0.00000 0.00 0.00000 0.00000 0.00 0.00000 0.00000 1.82 20.94462 39.94500 1.37 14.04161 26.78394 0.43 10.42233 19.87279 0.00 0.00000 0.00000 2.07 20.46043 39.02338 0.00 0.00000 0.00000 2.06 17.03107 32.48296</pre>

10:	0.00000	0.0000000
11:	24.65169	0.5536232
12:	0.00000	0.0000000
13:	0.00000	0.0000000
14:	20.51990	4.1805825

O resultado é um data.frame com os valores que respeitam o cut-off usado. Os valores abaixo do cut-off se torna zero.

Transformamos o nosso data.frame em um objeto SpatialPointDataFrame com CRS WGS-84 UTM Zone21 sul:

> coordinates(res.furo)<-~x+y+z
> crs(res.furo)<-CRS('+init=epsg:32721')</pre>

Gerando as poligonais usando Voronoi e um buffer de 1200 metros de cada furo:

>	> library(rgeos)										
>	<pre>> buf<-gBuffer(res.furo,width=1200)</pre>										
>	> library(dismo)										
> 1	v<-voronoi(r	res.furo)									
>	recurso<-int	tersect(v,	ouf)								
>	recurso@data	a									
	idfuro.x	esp.total	esp.minerio	k	kcl	k20	RI				
1	PBAT-10-01	0.00	0.00	0.00000	0.00000	0.00000	0.0000000				
2	PBAT-10-02	1.66	1.66	18.84602	35.94229	22.70663	3.5307229				
3	PBAT-10-05	0.44	0.44	3.42500	6.53500	4.13000	1.2500000				
4	PBAT-11-07	0.00	0.00	0.00000	0.00000	0.00000	0.0000000				
5	PBAT-11-06	0.00	0.00	0.00000	0.00000	0.00000	0.0000000				
6	PBAT-11-08	0.00	0.00	0.00000	0.00000	0.00000	0.0000000				
7	PBAT-11-09	1.82	1.82	20.94462	39.94500	25.23473	2.3098901				
8	PBAT-11-03	1.37	1.37	14.04161	26.78394	16.91942	2.0270073				
9	PBAT-11-10	0.43	0.43	10.42233	19.87279	12.55349	0.4139535				
10	PBAT-11-11	0.00	0.00	0.00000	0.00000	0.00000	0.0000000				
11	PBAT-11-12	2.07	2.07	20.46043	39.02338	24.65169	0.5536232				
12	PBAT-12-13	0.00	0.00	0.00000	0.00000	0.00000	0.0000000				
13	PBAT-12-14	0.00	0.00	0.00000	0.00000	0.00000	0.0000000				
14	PBAT-12-15	2.06	2.06	17.03107	32.48296	20.51990	4.1805825				

Plotando resultado dos polígonos voronoi:

> spplot(recurso,'kcl',col.regions=rev(get_col_regions()), main="Teor KCl %")

Teor KCI %

Calculando o recurso com base nos polígonos resultantes e seus dados.

Inca ut	. Caua poligono.			
> cbir	nd(recurso\$ho ⁻	leid.x,roun	d(area(recurso)))	
	[,1]	[,2]		
[1,]	"PBAT-10-01"	"4449845"		
[2,]	"PBAT-10-02"	"2871823"		
[3,]	"PBAT-10-05"	"3879207"		
[4,]	"PBAT-11-07"	"4449845"		
[5,]	"PBAT-11-06"	"4449845"		
[6,]	"PBAT-11-08"	"4432565"		
[7,]	"PBAT-11-09"	"2935622"		
[8,]	"PBAT-11-03"	"2875289"		
[9,]	"PBAT-11-10"	"3410341"		
[10,]	"PBAT-11-11"	"3439290"		
[11,]	"PBAT-11-12"	"3787818"		
[12,]	"PBAT-12-13"	"3863509"		
[13,]	"PBAT-12-14"	"4231838"		
[14,]	"PBAT-12-15"	"3295504"		

Área de cada polígono:

```
Volume de minério dos polígonos (m<sup>3</sup>):
```

> cbir	<pre>> cbind(recurso\$holeid.x,round(area(recurso)*recurso\$esp.minerio))</pre>							
	[,1]	[,2]						
[1,]	"PBAT-10-01"	"0"						
[2,]	"PBAT-10-02"	"4767226"						
[3,]	"PBAT-10-05"	"1706851"						
[4,]	"PBAT-11-07"	"0"						
[5,]	"PBAT-11-06"	"0"						
[6,]	"PBAT-11-08"	"0"						
[7,]	"PBAT-11-09"	"5342832"						
[8,]	"PBAT-11-03"	"3939146"						
[9,]	"PBAT-11-10"	"1466447"						
[10,]	"PBAT-11-11"	"0"						
[11,]	"PBAT-11-12"	"7840783"						
[12,]	"PBAT-12-13"	"0"						
[13,]	"PBAT-12-14"	"0"						
[14,]	"PBAT-12-15"	"6788737"						

Volume total (m³):

```
> sum(area(recurso)*recurso$esp.minerio)
[1] 31852023
```

Tonelagem total (assumindo densidade de 2.08):

```
> sum(area(recurso)*recurso$esp.minerio)*2.08
[1] 66252209
```

Espessura e teor médios de KCl (ponderados pelas áreas dos polígonos com teor acima do cut-off):

```
> sum(area(recurso)*recurso$esp.minerio)/sum(area(recurso[which
(recurso$esp.minerio>0),]))
[1] 1.381531
> sum(area(recurso)*recurso$kcl)/sum(area(recurso[which (recurso$esp.minerio>
0),]))
[1] 27.99665
```

Chegamos a conclusão que, com base nos furos apresentados, temos um recurso de: <u>66.252 milhões de toneladas @ 27.99% KCl com espessura média de mineralização de 1.38</u> <u>metros</u> Interpolando espessuras e teores usando Inverso de distância:

Inverso de distância Teor KCI %. Espessura (m) linhas de contorno

Visualizando toda informação em conjunto:

> plotRGB(sent,r=3,g=2,b=1,stretch='lin',main='Teor KCL %. Espessura (m) linhas de contorno',axes=TRUE,ext=extent(269000,290000,9609000,9620000)) > plot(idwmsc,add=TRUE,alpha=0.6,legend=F) > plot(furos,add=TRUE,cex=1,pch=20,col='blue') > text(furos,label=furos\$holeid,pos=1,cex=0.6,col='blue') > contour(idw.esp,add=TRUE,col='red',drawlabels=T,lwd=2)

6.2 – Modelagem de recursos usando R e GSLIB

Vamos falar superficialmente agora sobre geo estatística e modelo de blocos usando GSLIB que é um conjunto de programas em FORTRAN que cobrem todos os aspectos de modelagem geoespacial de recursos.

GSLIB são programas em Fortran77 ou Fortran90. Seu significado é **G**eostatistical **S**oftware **LIB**rary. Esse nome foi primeiramente utilizado para uma coleção de programas geo estatísticos desenvolvidos pela Universidade de Standford. Para mais detalhes baixe o livro de GSLIB (<u>http://claytonvdeutsch.com/wp-content/uploads/2019/03/GSLIB-Book-Second-Edition.pdf</u>).

Vamos usar PostgreSQL e R para prepare os dados e rapidamente gerar visualizações dos resultados.

Baixe as fontes do GSLIB para linux <u>http://www.statios.com/software/gslib90_ls.tar.gz</u> ou os executáveis em DOS <u>http://www.statios.com/software/gslib90.zip</u>

6.2.1 – Instalando o GSLIB

Se você escolheu o executáveis em DOS para o ambiente windows descompacte os mesmo em uma pasta.

Caso use o linux compile a fonte usando make (substitua o compilador fortran no arquivo **Makefile** se necessário, o utilizado é os g95 mas pode ser substituído por f95 ou o compilador fortran 90 que estiver na sua máquina. Existe também um arquivo **Makefile** dentro da pasta gslib, faça a mesma coisa substituindo o compilador fortran se necessário.

gslib90/Makefile FC=g**95 #substitua se necessário**

...

gslib90/gslib/Makefile FC=**g95 #substitua se necessário** ... compile usandp o comando abaixo na pasta gslib90 \$sudo make

* Se um error de compilação aparecer durante a compilação do arquivo fonte vargplt.for substitua as linha 579 e 580 com: parameter (MAXLEN=40) character str(MAXLEN)*1, strl*40 <u>e execute novamente com:</u> \$ sudo make Adicione a pasta do programa no PATH do seu sistema. Se for Linux, adicione a seguinte linha no

```
arquivo.bashsrc
export PATH="/onde/voce/instalou/gslib90:$PATH"
grave e digite no monitor
$ source ~/.bashrc
```

6.2.2 – Preparando os dados

Baixe os arquivos necessários localizados nos links abaixo:.

Collar - <u>http://amazeone.com.br/barebra/pandora/collar JERICHO.csv</u> Survey - <u>http://amazeone.com.br/barebra/pandora/survey JERICHO.csv</u> Assay - <u>http://amazeone.com.br/barebra/pandora/assay JERICHO.csv</u>

O primeiro passo é carregar a informação desses arquivos em um banco de dados espacial conforme as instruções abaixo.

Criaremos um banco de dados chamado jericho para colocarmos as informação de collar, assay e survey dentro dele. Fazemos isso usando:

\$ createdb jericho --encoding=utf-8 \$ psql jericho -c "CREATE EXTENSION postgis;" \$ psql jericho -c "CREATE TABLE collar(bhid varchar(30) NOT NULL, xcollar numeric NOT NULL,ycollar numeric NOT NULL,zcollar numeric NOT NULL, UNIQUE(bhid));" \$ psql jericho -c "CREATE TABLE assay(bhid varchar(30) NOT NULL, _from numeric NOT NULL, _to numeric NOT NULL, cu numeric, au numeric, dmn varchar(10), UNIQUE(bhid, _from, _to));" \$ psql jericho -c "CREATE TABLE survey(bhid varchar(30) NOT NULL,_at numeric NOT NULL,az numeric NOT NULL,dip numeric NOT NULL, UNIQUE(bhid, _at));"

Agora, usando R vamos carregar as tabelas criadas acima. Substitua '**seuNome**' and '**segredo**' com a senha e usuário do seu banco de dados.

Uma vez carregados o dados vamos gerar um arquivo de dados com as amostras individuais em espaço 3D que será a base do processamento usado pelo GSLIB. O código R abaixo calculará as coordenadas 3D de cada amostra nos furos de sondagem e criará o arquivo.

> dados<-dbGetQuery(con, "select TO_NUMBER(c.bhid,'99999999') as furo, c.xcollar as Xm, c.ycollar as Ym, c.zcollar as Zm, c.xcollar as Xb, c.ycollar as Yb, c.zcollar as Zb, c.xcollar as Xe, c.ycollar as Ye, c.zcollar as Ze, (a._to+a._from)/2 as m, a._from as b, a._to as e, (a._to-a._from) as len, a.cu as CU,a.au as AU from collar as c, assay as a where c.bhid = a.bhid and a.cu>0 order by furo,m") > colar<-dbGetQuery(con, "select TO_NUMBER(c.bhid,'999999999') as furo,s._at as prof, c.xcollar as x, c.ycollar as y, c.zcollar as z, s.dip as mergulho, s.az as az from collar as c, survey as s where c.bhid = s.bhid and s._at=0") > colar\$mergulho<-colar\$mergulho*-1 > estacoes<-dbGetQuery(con, "SELECT TO_NUMBER(bhid,'999999999') as furo, _at as prof,null AS x, null AS y, null as z, dip as mergulho, az FROM survey") > estacoes\$mergulho<-estacoes\$mergulho*-1</pre>

```
tresD<-function(da,es){</pre>
 linha<-data.frame()</pre>
 for(i in 1:nrow(da)){
  x<-da[i,3]
  y<-da[i,4]
  z<-da[i,5]</pre>
  di<-0
  fur<-es[es[[1]]==da$furo[[i]],]</pre>
  fur<-fur[order(fur$prof),]</pre>
  for(j in 1:nrow(fur)){
   angulo<-fur[j,7]
   d<-fur[j,2]-di
   di<-d+di
   deltaz<-abs(d*sin(fur[j,6]*pi/180))</pre>
   raio<-d*cos(fur[j,6]*pi/180)</pre>
   x<-round(x+raio*sin(angulo*pi/180))</pre>
   y<-round(y+raio*cos(angulo*pi/180))</pre>
   z<-round(z-deltaz)</pre>
   linha<-
rbind(linha,data.frame(furo=fur[j,1] ,prof=fur[j,2],x=x ,y=y ,z=z,mergulho=fur[j
,6],az=fur[j,7]))
   z<- z
  }
 lin<-rbind(linha,da)
 lin<-lin[order(lin$furo,lin$prof),]</pre>
 return(lin)
 pts.XYZ<-tresD(colar,estacoes)</pre>
  obterXYZ<-function(pontos,furo,profu){</pre>
 sete<-pontos[as.character(pontos$furo)==furo,]</pre>
 refa<-sete[sete$prof==max(sete[sete$prof<=profu,]$prof),]</pre>
 ref<-refa[1,]</pre>
 d<-profu-ref$prof
 deltaz<-abs(d*sin(ref$mergulho*pi/180))</pre>
 raio<-d*cos(ref$mergulho*pi/180)</pre>
 z<-ref$z-deltaz
 angulo<-ref$az
 x<-ref$x+raio*sin(angulo*pi/180)</pre>
 y<-ref$y+raio*cos(angulo*pi/180)</pre>
 return(c(x,y,z))
#Calculando as coordenadas 3D das amostras
 for(i in 1 : dim(dados)[1]){
 dado<-obterXYZ(pts.XYZ,dados$furo[i],dados$m[i])</pre>
 dado1<-obterXYZ(pts.XYZ,dados$furo[i],dados$b[i])</pre>
 dado2<-obterXYZ(pts.XYZ,dados$furo[i],dados$e[i])</pre>
 dados$xm[i]<-dado[1]</pre>
 dados$ym[i]<-dado[2]</pre>
 dados$zm[i]<-dado[3]</pre>
 dados$xb[i]<-dado1[1]</pre>
 dados$yb[i]<-dado1[2]</pre>
 dados$zb[i]<-dado1[3]</pre>
 dados$xe[i]<-dado2[1]</pre>
 dados$ye[i]<-dado2[2]</pre>
 dados$ze[i]<-dado2[3]</pre>
ŧ
 Criando o arquivo de dados que seá usado no gslib
> out_str<-paste0('dataL1.dat','\n','16','\n','bhidnum','\n','xm','\n', 'ym','\
n','zm','\n','xb','\n','yb','\n','zb','\n','xe','\n','ye','\n','ze','\n', 'm','
n','b','\n','e','\n','len','\n','cu','\n','au','\n')
n'
  cat(out_str, file = 'dataL1.dat')
```

library(data.table) fwrite(x = dados,file = "dataL1.dat", sep = " ", col.names=F, append=T)

O arquivo **datal1.dat** foi criado e será a base do processamento que faremos daqui por diante. Este formato é por GSLIB e basicamente consiste um cabeçalho com o nome do arquivo na primeira linha, a quantidade de coluna de dados na segunda linha, o nome de cada coluna de dados e finalmente os dados.

ohidnum
xm
vm
zm
xb
vb
zb
xe
ye
ze
n
b
9
len
cu
au
1801 498674.939820935 7678687.17059919 9.95347380770994
498674.770475121 7678687.19439919 10.4233201181029
498675.109166748 7678687.14679919 9.48362749731697 206.5 206 207 1
0.15 0.03

bhidnum é o número associado com o furo de sondagem (fortran não gosta de strings em estrutura de dados e por isso cada furo foi convertido para um número). As colunas **xm**, **ym** e **zm** são as coordenadas do meio da amostra. As colunas **xb**, **yb** e **zb** são as coordenadas do início da amostra (begin). As colunas **xe**, **ye** e **ze** são das coordenadas do fim da amostra (end), As colunas **m**, **b** e **e** são respectivamente as profundidades do início, meio e fim da amostra em profundidade dentro do furo de sonda. A coluna **len** é o cumprimento da amostra e as colunas **cu** e **au** são os valores analíticos de teor de cobre e ouro das amostra

6.2.3 – Gerando Histogramas e CDF (Frequência de distribuição acumulada)

O primeiro programa GSLIB que vamos executar gerará um histograma da frequência de distribuição do teor de Cobre e também gera um gráfico da frequência de distribuição acumulada (CDF).

A maioria dos programas GSLIB trabalham cou um arquivo de parametros .par e se você abre o aquivo fonte do programa ele geralmente se inicia com uma descrição dos campos de parâmetros na forma de comentário de programa (linhas iniciadas com 'c').

```
c This program generates a PostScript file with a histogram and summary
c statistics.
С
c INPUT/OUTPUT Parameters:
С
    datafl
                arquivo de entrada dos dados
С
    ivr,iwt
                coluna da variável e peso (0 se peso não usado)
С
    tmin,tmax
                limite de corte aceitável: >= tmin e < tmax</pre>
С
    outfl
                arquivo de saida com o histograma
С
    hmin,hmax
                limites do gráfico (automático se hmax<hmin)
С
                máxima frequência plotada
С
    fmax
    ncl
                número de classes usadas
С
                1=scala logarítmica, 0=escala aritimética
    ilog
С
    icum
                1=frequência acumulada, 0=histograma
С
                número de pontos para hist (0 => automático)
С
    ncum
                número de casas decimais (0 => automático)
С
    ndec
                título do gráfico
С
    title
                posição da estatísticao (ao longo do eixo X)
С
    spos
С
    xref
                valor de referência da posição do gráfico
С
```

e criaremos um arquivo **hist.par** como:

Parameters for HISTPLT

START OF PARAMETERS: dataL1.dat 15 0 -1.0e21 1.0e21 histplt.ps 0.01 15.0 -1.0 25 1 0 200 2 Clustered Data 1.5 -1.1e21

Execute o programa usando:
\$ histplt
(or histplt.exe if using dos)

As seguintes linhas irão aparecer: HISTPLT Version: 3.000

Which parameter file do you want to use?

Entre com o nome do arquivo parâmetro hist.par

```
e o seguinte resultado aparecerá:
  data file = dataL1.dat
  columns =
                        15
                                     0
  trimming limits =
                        -1.0000002E+21
                                          1.0000002E+21
  output file = histplt.ps
 attribute limits =
                         9.99999978E-03
                                          15.0000000
  frequency limit =
                        -1.00000000
  number of classes =
                                 25
  log scale option =
                                 1
```

cumulative frequency option =	Θ
number of decimal places =	2
title = Clustered Data	
position of stats = 1.500000	90
reference value = -1.09999999	=+21
There are 1530 data with:	
mean value = 0.92	2686
median value = 0.3	7500
standard deviation = 1.49	9117
minimum and maximum = 0.01	13.70000

HISTPLT Version: 3.000 Finished

O arquivo **histplt.ps** é criado com o gráfico.

Agora executaremos novamente criando o seguinte arquivo de parâmetro **histcdf.par** : Parameters for HISTPLT

START OF PARAMETERS: dataL1.dat 15 0 -1.0e21 1.0e21 cdfplt.ps 0.01 15.0 -1.0 25 1 1 1 200 2 Clustered Data 1.5 -1.1e21

Execute o programa com
\$ histplt
(or histplt.exe if using dos)

Irá aparecer:

HISTPLT Version: 3.000

Which parameter file do you want to use?

Entre o nome do novo arquivo de parâmetro criado histcdf.par

```
e o seguinte resultado aparecerá:
  data file = dataL1.dat
  columns =
                        15
                                     0
  trimming limits =
                        -1.0000002E+21
                                          1.0000002E+21
  output file = cdfplt.ps
  attribute limits =
                        9.99999978E-03
                                          15.0000000
  frequency
            limit =
                        -1.00000000
 number of classes =
                                 25
  log scale option =
                                 1
 cumulative frequency option =
                                             1
 number of cumulative points =
                                          200
 number of decimal places =
                                         2
  title = Clustered Data
  position of stats =
                          1.50000000
  reference value =
                       -1.09999999E+21
 There are
               1530 data with:
   mean value
                       =
                               0.92686
                       =
   median value
                               0.37500
                               1.49117
   standard deviation
                       =
                               0.01000
   minimum and maximum =
                                          13.70000
```

```
HISTPLT Version: 3.000 Finished
```

e o arquivo cdfplt.ps é criado com o gráfico.

6.2.4 – Desagrupamento do dados (declustering)

Vamos calcular aqui os parâmetros ideais para desagrupar (decluster) os dados apropriadamente. Eles são (dos comentários do código fonte declus.for).

```
С
              DECLUS: a three dimensional cell declustering program
С
С
c See paper in Computers and Geosciences Vol 15 No 3 (1989) pp 325-332
С
c INPUT/OUTPUT Parameters:
С
     datafl
                            arquivo com os dados
С
     datafiarquivo com os dadosicolx,y,z,vrcolunas X, Y, Z, e variáveltmin,tmaxlimites de cortesumflarquivo com saída do sumário resultanteoutflarquivo de saída para dados e pesos do desagrupameyanis,zanis0=procura por média mínima desagrupada (1=máximo)
С
С
С
                            arquivo de saída para dados e pesos do desagrupamento
С
С
С
     ncell, cmin, cmax número de tamanho de células , tam. mínimo, tam. máximo
С
С
     noff
                            número de offsets da origem
```

A distribuição dos dados usados nessa parte expande 370 unidades na direção X, 2250 na direção Y e 370 na direção Z. Vamos usar esses números os valores de anisotropia em y (yanis) e em z (zanis) dividindo a extensão em Y por X e também a extensão em Z por X o que nos dá 6.1 e 1 respectivamente. Agora nos precisamos de definir o valor para ncell, cmin e cmax escolheremos 190 células de 10 a 200. O tamanho máximo das células é cerca da metade da extensão em X, o mínimo da célula é menor que a menor distância entre amostras em X. o número de células será (max-min)/min. O número de offsets da origem (noff) é geralmente entre 25 e 100. Usaremos o valor 100.

Desta forma, nosso arquivo de parâmetros para desagrupamento declus.par será:

```
Parameters for DECLUS
```

```
START OF PARAMETERS:
dataL1.dat
2 3 4 15
-1.0e21 1.0e21
dsum.txt
ddataL1.dat
6.1 1
0
190 10 200
100
```

Ao executarmos o programa declus usando os paraâmetros do arquivo **declus.par** teremos: **\$** declus

DECLUS Version: 3.000

```
Which parameter file do you want to use?
declus.par
  data file = dataL1.dat
  columns = 2 3 4 15
  tmin,tmax = -1.00000002E+21 1.00000002E+21
  summary file = dsum.txt
  output file = ddataL1.dat
  anisotropy = 6.09999990 1.00000000
```

minmax flag = 0 190 ncell min max = 10.0000000 200.000000 offsets = 100 There are 1530 data with: 0.92686 mean value = 13.70000 minimum and maximum = 0.01000 size of data vol in X = 354.06250 size of data vol in Y = 2100.00000 size of data vol in Z = 354.39316 declustered mean 0.90013 = min and max weight 0.32065 5.73139 = equal weighting 1.00000 =

DECLUS Version: 3.000 Finished

Os arquivos **dsum.txt** e **ddataL1.dat** foram criados. Vamos plotar o resultado no arquivo **dsum.txt** usando R.

O resultado será:

Tamanho Célula

Interpretando o gráfico temos que o valor ideal do tamanho da célula para desagruparmos os dados é de 70. Vamos executar novamente o programa declus usando o seguinte arquivo parâmetro **declusadj.par** f:

Parameters for DECLUS

START OF PARAMETERS: dataL1.dat 2 3 4 15 -1.0e21 1.0e21 dsumdcl.txt dataL1dcl.dat 6.11Θ 1 70 70 100 Ao executar temos: \$ declus DECLUS Version: 3.000 Which parameter file do you want to use? declusadj.par data file = dataL1.dat columns = 3 15 2 4 tmin,tmax = -1.00000002E+21 1.0000002E+21 summary file = dsumdcl.txt output file = dataL1dcl.dat anisotropy = 6.09999990 minmax flag = 0 ncell min max = offsets = 100 1.00000000 1 70.000000 70.000000 offsets = 100 1530 data with: There are = mean value 0.92686 13.70000 declustered mean=0.90161min and max weight=0.32121equal weighting=1.00000 5.73048

DECLUS Version: 3.000 Finished

e o nosso novo arquivo de dados dataL1dcl.dat, agora desagrupado, foi criado.

6.2.5 – Histograma e CDF dos dados desagrupados

Vamos novamente plotar o histograma e o CDF para os dados desagrupados. Primeiro criando os arquivos de parâmetros:

Arquivo histdcl.par

Parameters for HISTPLT

START OF PARAMETERS:

dataL1dcl.dat 15 **17** -1.0e21 1.0e21 histpltdcl.ps 0.01 15.0 -1.0 25 1 0 200 2 Declustered Data 1.5 -1.1e21

e arquivo histcdfdcl.par

dataL1dcl.dat

-1.0e21 1.0e21 cdfpltdcl.ps 0.01 15.0 -1.0 25 1 1 200 2

Declustered Data

15 **17**

1.5 -1.1e21

Parameters for HISTPLT START OF PARAMETERS:

Ao executarmos teremos como resultado, usando histdcl.par, o arquivo histpltdcl.ps abaixo:

e usando histcdfdcl.par o arquivo cdfpltdcl.ps mostrará:

Comparando com o resultado anterior não desagrupado teremos.

Agrupado

Desagrupado

6.2.6 – Semivariograma

A criação e interpretação de um semi variograma é o processo mais importante na modelagem de recursos e seus parâmetros precisam ser bem calculados. Vamos tentar aqui, sem avançar muito em teoria cobrir os parâmetros usados por GSLIB em seu programa gamv.

As informações mais importantes que precisamos extrair do semi variograma são: nugget (efeito pepita), range (extensão) e sill (soleira) onde:

Sill – O valor onde o modelo fica plano.

Range – A distância na qual o modelo fica plano.

Nugget – O valor onde o modelo intercepta o eixo Y.

Para data distribuídos de forma irregular nós precisamos usar um procedimento para melhor entender como uma determinada informação varia com a distância. Valores próximos tendem a se relacionar melhor do que valores mais distantes. A maneira de medirmos estatisticamente como a informação se relaciona é através do calculo do semi variograma.

Um exemplo de um arquivo de parâmetros usado pelo programa gamv é mostrado abaixo.

Parame ****	eters for GAMV *******
START OF PARAMETERS:	
/data/cluster.dat	\arquivo com dados
2 3 4	\colunas X, Y, Z
1 15	\numero de variáveis, número das colunas
-1.0e21 1.0e21	\limites de corte
gamv.out	\arquivo saída do variograma
10	\número de lags
5.0	\distância separação entre lags
3.0	\tolerancia do lag
1	\número de direções
0.0 90.0 50.0 0.0 90.0 50.0	\azm,atol,bandh,dip,dtol,bandv
1	\soleira padronizada? (0=não, 1=sim)
1	\número de variogramas
111	\tail var., head var., tipo variograma

Usando o aquivo de parâmetros **gamv.par** abaixo geraremos um arquivo **gamv.out** contendo o variograma resultante.

Podemos visualizar o resultado gráfico usando R.

Distance

Da linha azul que melhor se ajusta ao resultado obtido extraímos os parâmetros necessários. Nugget: 0.53 Sill (a partir do nugget): 0.22 Range: 50

Alternativamente podemos usar a biblioteca **gstat** do R para extrair os mesmos parâmetros a partir do arquivo datalldcl.dat .

O gráfico abaixo foi gerado para ilustrar o resultado mostrado acima com gstat.

Nós usamos ferramentas distintas e obtivemos resultados bastante semelhantes. Nugget: 0.47 Sill (a partir do nugget): 0.21 Range: 51

Para finalizar a seção sobre semi variograma considere o ponto seguinte:

Somente uma direção (ou estrutura) foi considerada para demonstrar esta metodologia, mas sabemos que modelos geológicos são anisotrópicos e assim geralmente se faz necessário usar mais estruturas para melhor representar a anisotropia do mesmo.

Direções extra podem ser introduzidas nos parâmetros do programa gamv entrando o número de direções e linhas com os valores para **azm, atol, bandh, dip, dtol e bandv**:

```
      ...
      ...

      3
      \número de direções

      0.0 90.0 50.0 0.0 90.0 50.0 \azm,atol,bandh,dip,dtol,bandv

      90.0 90.0 50.0 45.0 90.0 50.0 \azm,atol,bandh,dip,dtol,bandv

      90.0 90.0 50.0 0.0 90.0 50.0 \azm,atol,bandh,dip,dtol,bandv

      ...
```

Cada direção irá gerar um novo semi variograma que poderá ser usado com seus respectivos pesos no processo de krigagem.

6.2.7 – Krigagem 3D

Com os parâmetros do semi variograma definidos, o próximo passo é efetuar a krigagem. A krigagem gerará um modelo de blocos 3D regularmente espaçado que é o nosso objetivo final.

Um arquivo de parâmetros típico para o programa kt3d.

```
Parameters for KT3D
                    * * * * * * * * * *
START OF PARAMETERS:
../data/cluster.dat
1 2 3 0 5 6
                                \arquivo com os dados
                                \ colunas para DH, X, Y, Z, var, sec var
-1.0e21 1.0e21
                                \limites de corte
                                \opções: 0=grid, 1=cross, 2=jackknife
1
xvk.dat
                                \arquivo com dados jackknife
1 2 0 3 0
                                \colunas para X,Y,Z,var and sec var
                                \nível debugging : 0,1,2,3
3
kt3d.dbg
                                \arquivo de saída do debugging
kt3d.out
                                \arquivo de saída da krigagem
50 0.5 1.0
                                \nx, xmn, xsiz
50 0.5 1.0
                                \ny,ymn,ysiz
1 0.5 1.0
                                \nz,zmn,zsiz
1 1 1
                                \x,y e z de discretização do bloco
4 8
                                \dados min, max para krigagem
\cap
                                \max por octant (0-> não usado)
                                \raio máximo de busca
20.0 20.0 20.0
                                \ângulos para o elipsoide de busca
0.0 0.0 0.0
                                \0=SK,1=OK,2=non-st SK,3=exdrift
0 2.302
                                \drift: x,y,z,xx,yy,zz,xy,xz,zy
\0, variável 1, estimativa do trend
0 0 0 0 0 0 0 0 0
\cap
extdrift.dat
                                \arquivo gridado com drift/média
                                \ número da coluna no arquivo gridado
4
1 0.47
                                \nst, efeito pepita(nugget)
1 0.8 0.0 0.0 0.0
                                \it,cc,ang1,ang2,ang3
10.0 10.0 10.0
                                \a_hmax, a_hmin, a_vert
```

No nosso exemplo o arquivo de parâmetros kt3d.par para executar o programa kt3d será:

```
Parameters for KT3D
                   * * * * * * * * * * * * *
START OF PARAMETERS:
dataL1dcl.dat
1 2 3 4 15 0
-1.0e21 1.0e21
0
xvk.dat
   2 0
             3
                  0
1
0
kt3d.dbg
kt3d.out
100 498449 5.0
449 7677948 5.0
80 -190 5.0
1
    1
            1
4
     8
0
300.0 50.0 50.0
 5.0 0.0 0.0
      2.302
1
0 0 0 0 0 0 0 0 0
0
extdrift.dat
4
1
     0.47
     1.0 5.0
              0.0 0.0
1
         50.0 50.0 50.0
```

Esse processamento vai gerar um arquivo kt3d.out com o resultado da krigagem. Este arquivo contém a estimativa e variância da krigagem para cada ponto/bloco no grid, que se estrutura por x depois y, e por último z. Pontos fora do alcance da estimativa tem o valor -999.

6.2.8 – Estatísticas do recurso

Nas seções anterior nós vimos como GSLIB computa parâmetros estatísticos e também efetua a krigagem 3D dos dados.

Agora vamos usar o resultado da krigagem para extrair algumas informações estatísticas clássicas usando R. Basicamente usaremos os arquivos de resultados kt3d.out criado acima.

Carregando os valores de teor de Cobre e variância extraídos do arquivo resultante da krigagem **kt3d.out** dentro de um data.frame.

A partir da origem definida pelas coordenadas (498449, 7677948,190) nós aplicamos um offset de 2.5 metros para representar um ponto no centro de cada bloco do modelo. Em seguida substituímos os valores -999 por NA para compatibilidade com R.

Podemos visualizar o data.frame usando:

$^{\prime}$	head(bmd†	,n=10)			
	Х	Y	Z	Cu	vai
1	498451.5	7677950.5	-187.5	NA	NA
2	498456.5	7677950.5	-187.5	NA	NA
3	498461.5	7677950.5	-187.5	NA	NA
4	498466.5	7677950.5	-187.5	NA	NA

5	498471.5	7677950.5	-187.5	NA	NA		
6	498476.5	7677950.5	-187.5	NA	NA		
7	498481.5	7677950.5	-187.5	NA	NA		
8	498486.5	7677950.5	-187.5	NA	NA		
9	498491.5	7677950.5	-187.5	NA	NA		
10	498496.5	7677950.5	-187.5	NA	NA		

Removendo valores NA conforme abaixo:

> bm<·	<pre>bm<-bmdf[which(bmdf\$Cu>0),]</pre>								
> head	<pre>> head(bm,n=10)</pre>								
	Х	Y	Z	Cu	var				
24269	498791.5	7679160.5	-187.5	0.81485093	2.4465380				
24270	498796.5	7679160.5	-187.5	0.81485093	2.4465380				
24271	498801.5	7679160.5	-187.5	0.74757487	2.4454827				
24368	498786.5	7679165.5	-187.5	0.45155278	2.4881620				
24369	498791.5	7679165.5	-187.5	0.81485093	2.4465380				
24370	498796.5	7679165.5	-187.5	0.81485093	2.4465380				
24371	498801.5	7679165.5	-187.5	0.74757487	2.4454827				
24372	498806.5	7679165.5	-187.5	0.62841624	2.4455087				
24468	498786.5	7679170.5	-187.5	0.81485093	2.4465380				
24469	498791.5	7679170.5	-187.5	0.81485093	2.4465380				

Vamos ver alguns parametros estatísticos deste modelo.

\geq	summary	/(bm\$Cu)					
	Min.	1st Qu.	Median	Mean	3rd Qu.		Max.
0	031769	0.418497	0.679251	0.891082	1.186710	7	567730

Distribuição do resultado modelado. > hist(bm\$Cu,main='Histograma Cobre', xlab='Teor Cu %')

Histograma Cobre

Teor Cu %

6.2.9 - Visualizando os Resultados

Verificando como nosso modelo esta distribuído espacialmente usando R.

Podemos fatiar o modelo usando.

```
> plot(bm$X[bmdf$Z > -190 & bmdf$Z < -185], bm$Y[bmdf$Z > -190 & bmdf$Z < -
185],cex=0.02,pch=20,asp=1,col = dc, main='Vista topo 185m',xlab='Easting',
ylab='Northing')
> plot(bm$X[bmdf$Z > -185 & bmdf$Z < -180], bm$Y[bmdf$Z > -185 & bmdf$Z < -
180],cex=0.02,pch=20,asp=1,col = dc, main=' Vista topo 180m',xlab='Easting',
ylab='Northing')
> plot(bm$X[bmdf$Z > -180 & bmdf$Z < -175], bm$Y[bmdf$Z > -180 & bmdf$Z < -
175],cex=0.02,pch=20,asp=1,col = dc, main=' Vista topo 175m',xlab='Easting',
ylab='Northing')
```


Essa visualização é rápida e prática mas existem forma mais eficientes de visualizarmos os resultados do modelo de bloco usando Paraview, mas primeiro precisaremos de criar arquivos do tipo **VTK**. A seguir veremos como fazer isso usando R.

Visualizando os furos de sonda (criando arquivo vtk)

No código seguinte calcularemos a coordenada do fundo do furo usando as coordenadas do colar, direção e mergulho do furo. Este é um método calcularia as coordenadas intermediárias com base na informação da tabela survey, mas o presente conjunto de dados somente possui informação do colar e e profundidade total do poço, assim, na ausência da informação de survey, usaremos o início e o final do poço para definir a linha do furo de sonda para efeitos de simplificação. O objetivo aqui é mostrar como criar um arquivo .vtk que ilustra em 3D o furo de sonda com o Paraview.

Extraindo as coordenadas intermediárias do furo (nesse caso, somente início e fim).

```
library(RPostgreSQL)
 con<-dbConnect(PostgreSQL(),host='127.0.0.1',user='yourUserName',</pre>
               password='secret',dbname='jericho')
 collar<-dbGetQuery(con, "select T0_NUMBER(c.bhid,'99999999')</pre>
                     as holeid, s._at as depth, c.xcollar as x,
                     c.ycollar as y, c.zcollar as z, s.dip as dip,
s.az as az from collar as c, survey as s where
                     c.bhid = s.bhid and s._at=0")
 collar$dip<-collar$dip*-1</pre>
station<-dbGetQuery(con, "SELECT TO_NUMBER(bhid, '999999999') as holeid,</pre>
                        at as depth, null AS x, null AS y, null as z,
                        dip as dip, az FROM survey where at>0")
station$dip<-station$dip*-1</pre>
tresD<-function(da,es){</pre>
linha<-data.frame()
for(i in 1:nrow(da)){
x<-da[i,3]</pre>
y<-da[i,4]</pre>
 z<-da[i,5]
 di<-0
 fur<-es[es[[1]]==da$holeid[[i]],]</pre>
```

<pre>fur<-fur[order(fur\$depth),] for(j in 1:nrow(fur)){ angulo<-fur[j,7] d<-fur[j,2]-di di<-d+di deltaz<-abs(d*sin(fur[j,6]*pi/180)) raio<-d*cos(fur[j,6]*pi/180) x<-x+raio*sin(angulo*pi/180) y<-y+raio*cos(angulo*pi/180) z<-z-deltaz linha<-rbind(linha,data.frame(holeid=fur[j,1],depth=fur[j,2],x=x,</pre>								
	}							
3	,							
i,	in<-rhi	nd(link	(sh sr					
1	in< 101	In (CIIII I n r de r i	lintholeid	lintdonth)	1			
C.	111 - 111	[Uluely in)	(thisilotera,	, (Insueptii),				
יי ר		LII <i>)</i>						
5			llon station	-)				
2) L S < - L I (esp(co)	llar, Station	1)				
>	iead (pts	5)				-1-2		
	noleid	αерτη	X	у	Z	aib	az	
/4	1801	0	498605.000	/6/869/.00	204.0000000	- /0	98	
1	1801	290	498703.221	7678683.20	-68.5108600	-70	98	
75	1802	Θ	498679.000	7679401.00	202.0000000	-70	88	
2	1802	288	498777.442	7679404.44	-68.6314748	-70	88	
76	1804	0	498450.000	7679950.00	200.0000000	- 55	64	
3	1804	405	498658.788	7680051.83	-131.7565779	- 55	64	

Note que cada furo apresenta somente dois pontos (início e final do furo). Caso existissem informações intermediárias de survey, estes pontos estariam presentes no data.frame resultante.

Agora criamos o arquivo furos.vtk para ser visualizado no Paraview.

```
write('# vtk DataFile Version 4.2',file="furos.vtk")
write('Furos de sonda Jericho',file="furos.vtk",append=TRUE)
write('ASCII',file="furos.vtk",append=TRUE)
write('DATASET POLYDATA',file="furos.vtk",append=TRUE)
write(paste('POINTS',dim(pts)[1],'double'),file="furos.vtk",append=TRUE)
for(v in 1:dim(pts)[1]){
 write(paste(pts$x[v],pts$y[v],pts$z[v]), file="furos.vtk",append=TRUE)
write('',file="furos.vtk",append=TRUE)
write('METADATA',file="furos.vtk",append=TRUE)
write('INFORMATION 2', file="holes.vtk", append=TRUE)
write('NAME L2 NORM RANGE LOCATION vtkDataArray',file="furos.vtk",
    append=TRUE)
write(paste('DATA 2 ',min(pts$y),max(pts$y)),file="furos.vtk",append=TRUE)
write('NAME L2 NORM FINITE RANGE LOCATION vtkDataArray', file="furos.vtk",
    append=TRUE)
write(paste('DATA 2 ',min(pts$y),max(pts$y)),file="furos.vtk",append=TRUE)
write('',file="furos.vtk",append=TRUE)
write(paste('LINES',dim(pts)[1]/2,(dim(pts)[1]/2)*3),file="furos.vtk",
    append=TRUE)
for(i in seq(0, dim(pts)[1]-1, by = 2)){
write(paste('2',i,i+1),file="furos.vtk", append=TRUE)
write('',file="furos.vtk",append=TRUE)
write('',file="furos.vtk",append=TRUE)
write(paste('CELL_DATA',dim(pts)[1]/2),file="furos.vtk",append=TRUE)
write('FIELD FieldData 1', file="furos.vtk", append=TRUE)
write(paste('BHID 1',dim(pts)[1]/2,'string'),file="furos.vtk",append=TRUE)
```

> for(i in seq(1, dim(pts)[1], by = 2)){ write(pts\$holeid[i],file="furos.vtk",append=TRUE) } write('METADATA',file="furos.vtk",append=TRUE) > write('INFORMATION 0',file="furos.vtk",append=TRUE) > write('',file="furos.vtk",append=TRUE)

Caso não tenha o programa Paraview, o mesmo pode ser baixado gratuitamente em : <u>https://www.paraview.org/download/</u>

Abrindo o arquivo furos.vtk usando o Paraview.

Visualizando as amostras (criando arquivo vtk)

Agora usando o arquivo datalldcl.dat criado previamente, vamos criar o arquivo samples.vtk com a posição das amostras e o teor de Cobre em cada uma delas.

```
dcl<-read.table('dataL1dcl.dat',skip=19)</pre>
head(dcl,n=1)
names(dcl)<-c('bhidnum','xm','ym','zm','xb','yb','zb','xe','ye','ze','dhdm',</pre>
              'dhdb','dhde','len','cu','au','wght')
write('# vtk DataFile Version 4.2',file="Samples.vtk")
write('Samples Jericho', file="Samples.vtk", append=TRUE)
write('ASCII',file="Samples.vtk",append=TRUE)
write('DATASET UNSTRUCTURED_GRID',file="Samples.vtk",append=TRUE)
write(paste('POINTS',dim(dcl)[1],'double'),file="Samples.vtk",append=TRUE)
for(v in 1:dim(dcl)[1]){
write(paste(dcl$xm[v],dcl$ym[v],dcl$zm[v]), file="Samples.vtk",append=TRUE)
write('',file="Samples.vtk",append=TRUE)
write('METADATA',file="Samples.vtk",append=TRUE)
write('INFORMATION 2',file="Samples.vtk",append=TRUE)
write('NAME L2_NORM_RANGE LOCATION vtkDataArray',file="Samples.vtk",
    append=TRUE)
write(paste('DATA 2 ',min(dcl$ym),max(dcl$ym)),file="Samples.vtk",append=TRUE)
```

```
write('NAME L2 NORM FINITE RANGE LOCATION vtkDataArray',file="Samples.vtk",
      append=TRUE)
write(paste('DATA 2 ',min(dcl$ym),max(dcl$ym)),file="Samples.vtk",append=TRUE)
write('',file="Samples.vtk",append=TRUE)
write(paste('CELLS',dim(dcl)[1],dim(dcl)[1]*2),file="Samples.vtk",append=TRUE)
 for(i in seq(0, dim(dcl)[1]-1, by = 1)){
write(paste('1',i),file="Samples.vtk", append=TRUE)
write('',file="Samples.vtk",append=TRUE)
write(paste('CELL_TYPES',dim(dcl)[1]),file="Samples.vtk",append=TRUE)
 for(i in 1:dim(dcl)[1]){
write('1',file="Samples.vtk",append=TRUE)
write('',file="Samples.vtk",append=TRUE)
write(paste('CELL_DATA',dim(dcl)[1]),file="Samples.vtk",append=TRUE)
write('FIELD FieldData 1',file="Samples.vtk",append=TRUE)
write(paste('CU 1',dim(dcl)[1],'double'),file="Samples.vtk",append=TRUE)
 for(i in seq(1, dim(dcl) [1], by = 1)) {
write(paste(dcl$cu[i]), file="Samples.vtk",append=TRUE)
write('METADATA',file="Samples.vtk",append=TRUE)
write('INFORMATION 0',file="Samples.vtk",append=TRUE)
write('',file="Samples.vtk",append=TRUE)
```

Abra o arquivo samples.vtk no paraview e selecionet Cu como o campo de cor, ajuste o tamanho do ponto para 4 e reescale o campo de vlores de Cu para de 0 a 6&. Voce deverá ver algo semelhante à imagem abaixo (o arquivo furos.vtk é tambem mostrado como linhas brancas).

Em modo tela cheia (F11)

Visualizando modelo de bloco (criando arquivo vtk)

A series of vtk files, representing different cutoff grades, will be generated now. We will create 3.0, 3.5, 4.0, 4.5 and 5.0% cutoff files.

```
kri<-read.table('kt3d.out',skip=4)</pre>
 options(digits = 7)
 bmdf<-data.frame(X=rep(seq(498451.5,498946.5,5),35920),</pre>
                 Y=rep(seq(7677950.5,7680190.5,5),each=100),
Z=rep(seq(-187.5,207.5,5),each=44900),
                 Cu=kri$V1, var=kri$V2)
 bmdf[bmdf == -999] <- NA
 blockMaker<-function(grade,fileName){</pre>
bm<-bmdf[which(bmdf$Cu>grade),]
write('# vtk DataFile Version 4.2',file=fileName)
write('Block Model Jericho',file=fileName,append=TRUE)
write('ASCII',file=fileName,append=TRUE)
write('DATASET UNSTRUCTURED_GRID',file=fileName,append=TRUE)
write(paste('POINTS',dim(bm)[1]*8,'float'),file=fileName,append=TRUE)
for(v in 1:dim(bm)[1]){
 write(paste(bm$X[v]-2.5,bm$Y[v]-2.5,bm$Z[v]-2.5, bm$X[v]+2.5,bm$Y[v]-2.5,
     bm$Z[v]-2.5), file=fileName,append=TRUE)
 write(paste(bm$X[v]-2.5,bm$Y[v]+2.5,bm$Z[v]-2.5, bm$X[v]+2.5,bm$Y[v]+2.5,
     bm$Z[v]-2.5), file=fileName,append=TRUE)
 write(paste(bm$X[v]-2.5,bm$Y[v]-2.5,bm$Z[v]+2.5, bm$X[v]+2.5,bm$Y[v]-2.5,
     bm$Z[v]+2.5), file=fileName,append=TRUE)
 write(paste(bm$X[v]-2.5,bm$Y[v]+2.5,bm$Z[v]+2.5, bm$X[v]+2.5,bm$Y[v]+2.5,
     bm$Z[v]+2.5), file=fileName,append=TRUE)
write('',file=fileName,append=TRUE)
write(paste('CELLS',dim(bm)[1],dim(bm)[1]*9),file=fileName,
     append=TRUE)
for(i in seq(0, dim(bm)[1]*8-1, by = 8)){
 write(paste('8',i,i+1,i+2,i+3,i+4,i+5,i+6,i+7,collapse=""),
     file=fileName, append=TRUE)
```

```
write('',file=fileName,append=TRUE)
write(paste('CELL_TYPES',dim(bm)[1]),file=fileName,append=TRUE)
 for(i in 1:dim(bm)[1]){
  write('11',file=fileName,append=TRUE)
 }
 write('',file=fileName,append=TRUE)
write('cELL_DATA',dim(bm)[1]),file=fileName,append=TRUE)
write('FIELD FieldData 1',file=fileName,append=TRUE)
write(paste('CU_OK 1',dim(bm)[1],'float'),file=fileName,append=TRUE)
for(i in seq(1, dim(bm)[1], by = 8)){
  write(paste(bm$Cu[i],bm$Cu[i+1],bm$Cu[i+2],bm$Cu[i+3],bm$Cu[i+4],
       bm$Cu[i+5],bm$Cu[i+6],bm$Cu[i+7],collapse=""),
       file=fileName,append=TRUE)
 }
 write('METADATA',file=fileName,append=TRUE)
 write('INFORMATION 0',file=fileName,append=TRUE)
 write('',file=fileName,append=TRUE)
print(paste(fileName,' criado...'))
print(paste(' Cutoff: ', grade,'%'))
print(paste(' Teor Médio: ',mean(bm$Cu),'%'))
print(paste(' Volume: ',dim(bm)[1]*25,' cubic meters'))
 print(paste(' Tonelagem: ',dim(bm)[1]*25*3,' ton, assumindo densidade de 3 ton
por metro cúbico'))
tx <- readLines(fileName)</pre>
 tx2 <- gsub(pattern = "NA", replace = "", x = tx)</pre>
 writeLines(tx2, con=fileName)
 blockMaker(3.0, 'block 3.vtk')
[1] "block 3.vtk criado...'
    " Cutoff: 3 %"
[1]
[1] " Teor Médio: 3.58066972841469 %"
[1] " Volume: 289375 cubic meters"
[1] " Tonelagem: 868125 ton, assumindo densidade de 3 ton por metro cúbico"
> blockMaker(3.5,'block_35.vtk')
[1] "block_35.vtk criado..."
[1] " Cutoff: 3.5 %"
[1] " Teor Médio: 4.22348828407216 %"
[1] " Volume: 97000 cubic meters"
[1] " Tonelagem: 291000 ton, assumindo densidade de 3 ton por metro cúbico"
> blockMaker(4.0,'block_4.vtk')
[1] "block_4.vtk criado...'
[1] " Cutoff: 4 %"
[1] " Teor Médio: 4.55287305340017 %"
[1] " Volume: 57350 cubic meters"
[1] " Tonelagem: 172050 ton, assumindo densidade de 3 ton por metro cúbico"
> blockMaker(4.5,'block_45.vtk')
[1] "block 45.vtk criado...
[1] " Cutoff: 4.5 %"
[1] " Teor Médio: 4.70371268715881 %"
[1] " Volume: 40300 cubic meters"
[1] " Tonelagem: 120900 ton, assumindo densidade de 3 ton por metro cúbico"
> blockMaker(5.0,'block_5.vtk')
[1] "block_5.vtk criado...
[1] " Cutoff: 5 %"
[1]
    " Teor Médio: 5.39973631633663 %"
[1]
    " Volume: 5050 cubic meters"
[1]
[1] " Tonelagem: 15150 ton, assumindo densidade de 3 ton por metro cúbico"
```

O código acima mostrou o recurso para cada cutoff passado e criou os seguintes arquivos vtk para cada cutoff.

3.0% Cu

3.5% Cu

4.0% Cu

4.5% Cu

Visualização completa dos dados com Paraview.

6.3 – Curvas LAS e exemplo de análise petrofísica básica

Log ASCII Standard (ou LAS) é um formato comum de armazenamento de levantamentos de geofísicos comuns em poços de exploração de petróleo e gás e menos conhecido em exploração mineral.

6.3.1 - Lendo o arquivo LAS e carregando em formato data.frame

Vamos mostrar como ler um arquivo LAS versão 2 (unwraped) abaixo. As informações extraídas serão as curvas e seus respectivos valores. Valores nulos, comumente apresentados como -999.25, serão convertidos para NA no data.frame.

O arquivo LAS deste exemplo pode ser baixado em: <u>http://amazeone.com.br/barebra/pandora/1046531020.las</u>

```
las<-readLines('1046531020.las')</pre>
 data<-''
 hd<-''
 a<-1
 go<-0
 for (i in 1:length(las)){
if(substr(las[i], 1, 2) == "~A"){
data<- las[(i+1):length(las)]</pre>
break
}
 las<-readLines('1046531020.las')</pre>
 for (i in 1:length(las)){
if(substr(las[i], 1, 2) == "~C"){go<-1}
if(substr(las[i+1], 1, 2) == "~P" || substr(las[i+1], 1, 2) == "~A"
|| substr(las[i+1], 1, 2) == "~O"){break}</pre>
if(go==1){value<-strsplit(trimws(las[i+1],"l"),'\\s{1,}')[[1]]
hd[a]<-value[1]
a<-a+1
}
 las.data<-read.table(header=TRUE, text=data)</pre>
 names(las.data)<-hd</pre>
 las.data[las.data==-999.2500]<-NA</pre>
```

6.3.2 – Carregando os dados no banco de dados

Crie uma tabela básica para armazenar as curvas LAS. Colocaremos cada curva associada com sua profundidade e organizada por furo. Usando esse formato poderemos armazenar os dados de perfilagem de diversos furos em uma única tabela.

Primeiro criamos a tabela em um banco de dados já existente. Substitua o ... com os valores apropriados para seu usuário e senha.

```
> library(RPostgreSQL)
> con<-dbConnect(PostgreSQL(),host="127.0.1", user= "andre",password="devcor",
dbname="geobanco")
> sql<-"CREATE TABLE dhd_las (dhd_hole_id varchar(20), dhd_curve varchar(20),
> dhd_depth numeric(12,2),dhd_value numeric(12,2));"
> dbGetQuery(con,sql)
```

Agora vamos carregar o dataframe no banco de dados. Um arquivo texto chamado templas.csv será criado antes de carregarmos os dados (esse passo poderá demorar um ou dois minutos)

Vamos agora mostrar como plotar no formato tradicional.

```
library(RPostgreSQL)
  con<-dbConnect(PostgreSQL(),host="127.0.0.1", user='...', password='...',</pre>
dbname='geobanco')
> sql<-"select * from dhd_las where dhd_hole_id=' 1046531020'"
  las<-dbGetQuery(con,sql)</pre>
  las.df <- reshape(las,timevar = "dhd_curve",idvar = c("dhd hole_id",</pre>
"dhd_depth"), direction = "wide")
> names(las.df)←c('holeID','depth','CILD','CALN','CALD', 'GR','ILD','ILM',
'MINV','LWTLB','CALM','MNOR','NPLS','DPLS','RXRT','SFL','SP','DRHO','RHOB','PE'
<u>'INV RF'</u>, 'NOR_RF')
  par(mar=c(1,2,5.5,2) + 0.1)
  layout(matrix(c(1,2),nrow=1), widths=c(1,2))
 plot(las.df$SP,las.df$depth,axes=FALSE,xlim=c(-150,50),type='l',xlab='',
ylab='',col='black',ylim=c(3600,3250))
 axis(3, xlim=c(-150,50),col='black',lwd=1,cex.lab=1,cex.axis=0.5)
  par(new=TRUE)
> plot(las.df$GR,las.df$depth, axes=FALSE, xlim=c(0,150), type='l',xlab='',
ylab='',col='red',lty=2, ylim=c(3600,3250),lwd=1)
 axis(3, xlim=c(0,150),col='red',lwd=1,line=1.6,cex.lab=1,cex.axis=0.5)
 par(new=TRUE)
  plot(las.df$GR,las.df$depth, axes=FALSE, xlim=c(150,300), type='l',xlab='',
ylab='',col='red',lty=2, ylim=c(3600,3250),lwd=1)
 axis(3, xlim=c(0,150),col='red',lwd=1,line=1.9,cex.lab=1,cex.axis=0.5)
  par(new=TRUE)
  plot(las.df$CALD,las.df$depth, axes=FALSE, xlim=c(6,16), type='l',xlab='',
ylab='',col='blue',lty=3, ylim=c(3600,3250),lwd=1)
 axis(3, xlim=c(6,16),col='blue',lwd=1,line=3.6,cex.lab=1,cex.axis=0.5)
  axis(2,pretty(range(las.df$depth),500),cex.lab=1,tck=1,cex.axis=0.5,
col='gray')
> mtext('depth',side=2,col="black",line=2)
> legend(x=12,y=3250,legend=c('SP','GR','CAL-D'),lty=c(1,2,3),col=c('black',
'red','blue'),cex=0.5)
plot(las.df$ILD,las.df$depth,axes=FALSE,xlim=c(10^-1,10^3),type='l',xlab='',
ylab='',col='blue',ylim=c(3600,3250),log='x')
 at.y <- outer(1:9, (.5*10^(-1:3)))
 lab.y <- ifelse(log10(at.y) %% 1 == 0, at.y*2, NA)</pre>
axis(3, xlim=c(10^-1,10^3),col='blue',lwd=1,cex.lab=1,cex.axis=0.5, at=at.y,
labels=lab.y, las=1)
  par(new=TRUE)
  plot(las.df$ILM,las.df$depth, axes=FALSE, xlim=c(10^-1,10^3),
type='l',xlab='', ylab='',col='green',lty=2, ylim=c(3600,3250),lwd=1,log='x')
> axis(3, xlim=c(10^-1,10^3),col='green',lwd=1,line=1.9,cex.lab=1,cex.axis=0.5,
at=at.y, labels=lab.y, las=1)
par(new=TRUE)
```

> plot(las.df\$SFL,las.df\$depth, axes=FALSE, xlim=c(10^-1,10^3), type='l',xlab='', ylab='',col='black',lty=3, ylim=c(3600,3250),lwd=1,log='x') axis(3, xlim=c(10^-1,10^3),col='black',lwd=1,line=3.6,cex.lab=1,cex.axis=0.5, at=at.y, labels=lab.y, las=1) axis(2,pretty(range(las.df\$depth),500),cex.lab=1,tck=1,cex.axis=0.5, col='gray') legend(x=5,y=3250,legend=c('ILD','ILM','SFL'),lty=c(1,2,3),col=c('blue', green','black'),cex=0.5)

Ou:

par(mar=c(1,2,5,2) + 0.1)layout(matrix(c(1,2),nrow=1), widths=c(1,2)) plot(las.df\$SP,las.df\$depth,axes=FALSE,xlim=c(-150,50),type='l',xlab='', ylab='',col='black',ylim=c(2350,2000)) axis(3, xlim=c(-150,50),col='black',lwd=1,cex.lab=1,cex.axis=0.5) par(new=TRUE) plot(las.df\$GR,las.df\$depth, axes=FALSE, xlim=c(0,200), type='l',xlab='', ylab='',col='red',lty=2, ylim=c(2350,2000),lwd=1) axis(3, xlim=c(0,200),col='red',lwd=1,line=1.8,cex.lab=1,cex.axis=0.5) par(new=TRUE)

6.3.3 – Extraindo parâmetros petrofísicos

Existe muita coisa envolvida na análise petrofísica, aqui vamos manter simples por razões didáticas e ilustrativas. Aplicaremos essa análise no furo como um todo onde geralmente intervalos presselecionados são usados para ter maior representatividade.

Carregando as curvas

Selecionando curvas básicas que são usadas na análise petrofísica.

```
library(RPostgreSQL)
 con<-dbConnect(PostgreSQL(),host="...", user="...", password="...",</pre>
dbname="...")
 sql<-"select * from dhd_las where dhd_curve='GR' or dhd_curve='ILD'</pre>
  dhd_curve='ILM' or dhd_curve='NPLS' or dhd_curve='RHOB' or dhd_curve='PE';"
 las.petro<-dbGetQuery(con,sql)</pre>
```

Organizando o formato dos dados no formato 'wide' usando reshape e renomeando as colunas: petro.df <- reshape(las.petro,timevar =
hd_depth"), direction = "wide")</pre> "dhd_curve",idvar = c("dhd_hole_id", dhd names(petro.df) <-c('holeID',</pre> 'depth', 'GR', 'ILD', 'ILM', 'NPLS', 'RHOB', 'PE')

Calculando o VSh

Vamos agora calcular o primeiro parâmetro, a curva Vsh ou shaliness :

GRmax<-max(petro.df\$GR,na.rm=TRUE) GRmin<-min(petro.df\$GR,na.rm=TRUE) petro.df\$VSH<-(petro.df\$GR-GRmin)/(GRmax-GRmin)

Podemos visualizar a curva Vsh usando:

plot(petro.df\$depth,petro.df\$VSH,type='l',main='Shaliness',xlab='Prof. m', ab='Vsh')

Calculando a Porosidade

Antes de calcularmos a porosidade - densidade nós precisaremos de calcular dois parâmetros: Densidade da matriz e densidade do fluido. Nós assumiremos que a densidade do fluido seja 1 e a densidade da matriz será interpretada grosseiramente com a curva PE. Se PE é abaixo de 1 é carvão, se próximo a 2 é arenito, se próximo a 3 pode ser folhelho ou dolomito, se próximo a 5 é calcário ou anidrita. O valor de Vsh, que já foi calculado, pode ser usado para diferenciar folhelho de dolomito e a densidade pode ser usada para diferenciar anidrita de calcário.

• •	Sddii2diido:
>	<pre>plot(petro.df\$depth,petro.df\$PE,type='l',col='red',main='PE e VSh',xlab='Prof</pre>
ft	', ylab='VSh PE',ylim=c(0,4))
>	<pre>lines(petro.df\$depth,PE.lp,type='l',lwd=2)</pre>
>	lines(petro.df\$depth,petro.df\$VSH,type='l',lwd=.5,col='blue')
>	<pre>petro.df<-cbind(petro.df,PE.lp)</pre>

Com base nos valores de Pe e VSh(gamma) o poço pode ser dividido em 3 unidades principais: uma composta basicamente por folhelho e dolomita de 200 a 1600 pés, uma unidade siliciclástica composta por folhelho e arenito de 1600 a 3300 pés e uma unidade basal com a presença de folhelho e carbonatos a partir de 3300 pés.

Usaremos a porosidade da matriz de 2.87 gm/cc para o dolomito, 2.7 gm/cc para o folhelho e 2.65 gm/cc para o arenito. Pe < 2.5 será interpretado como arenito, Pe > 2.5 será folhelho quando o Vsh > 0.1 caso contrário será interpretado como dolomito.

Abaixo ajustaremos a densidade da matriz como o descrito acima. De uma forma geral executamos um processo de identificação litológica do poço como bônus nesse processo.

		, 0		3		1	
> pe	etro.df\$ro.matrix	<- ifelse	(petro.	.df\$PE.lp	>=2.75,	ifelse(petro	.df\$VSH<
0.1	2.87,2.7), 2.65)						
> p	lot(petro.df\$depth	,petro.dfs	<pro.mat< pre=""></pro.mat<>	rix,type=	='l',mair	n='Densidade	da Matrizy',
xlal	<pre>>='Prof ft',ylab='</pre>	Densidade	gm/cc'	')			

NOTA - Lembre que usamos várias suposições neste processamento: Aplicamos no furo todo e não em intervalos alvo, usamos a densidade do fluido como sendo 1 e dividimos somente em três unidades litológicas alvo. Tudo isso diminuirá a precisão do tratamento mas o objetivo aqui é mostrar como o método é executado em R a partir de uma curva LAS que foi carregada no banco de dados.

Vamos agora calcular a porosidade usando um valor de densidade do fluido de 1.
> petro.df\$phi<- (petro.df\$ro.matrix-petro.df\$RHOB) / (petro.df\$ro.matrix-1)
> plot (petro.df\$depth, petro.df\$phi, type='l', main='Porosidade', xlab='Prof ft', ylab='Porosidade')

Porosidade

Calculando o Sw

O primeiro passo é calcular o Rw a partir de uma "zona de água" (water zone) selecionada. Novamente, este é um exemplo didático e estamos aplicando para o poço inteiro, geralmente este processo é aplicado para intervalos de furo selecionados. Então, vamos usar um valor único de Rw que pode não ser apropriado para o poço inteiro pois a resistividade da zona da água tende a mudar com a profundidade.

Selecione um intervalo onde a resistividade é baixa e que seja bem poroso (arenito) para obter o valor de Rw. A 3042 pés de profundidade temos essa condição. Então calculamos o Rw usando:

```
> petro.df[petro.df$depth == 3042,]
# holeID depth GR ILD ILM NPLS RHOB PE VSH PE.lp
#5696 1046531020 3042 14.91 17.93 19.78 25.97 2.38 2.35 0.01037538 2.427359
# ro.matrix phi
#5696 2.65 0.1636364
> Rt<-petro.df[petro.df$depth == 3042,]$ILD
> phiT<-petro.df[petro.df$depth == 3042,]$phi
> Rw<-phiT*phiT*Rt
> Rw
#[1] 0.4801091
```

Agora vamos calcular o Sw para o poço inteiro usando: > petro.df\$Sw<-1/petro.df\$phi*sgrt (Rw/petro.df\$ILD)

Valores maiores que 1 e menores que 0 serão convertidos para 1.

```
> index<- petro.df$Sw > 1
> petro.df$Sw[index]<- 1
> index<- petro.df$Sw < 0
> petro.df$Sw[index]<- 1
> plot(petro.df$depth,petro.df$Sw,type='l',main='Sw',xlab='Prof ft', ylab='Sw',
ylim=c(-1,2))
```


Sw

Calculando Net Reservoir e Net Pay

De forma simplificada, o Net Reservoir são as zonas onde o VSh é baixo e a porosidade é alta. O Net Pay são as zonas dentro do Net Reservoir onde a saturação de água e pequena. Usaremos os valores de corte de 0.05 para o Vsh, de 0.1 para a Porosidade e 0.5 para a Sw para definirmos nosso Net Pay.

```
> petro.df$net.pay<-ifelse(petro.df$phi>0.1,ifelse(petro.df$VSH<0.05,
ifelse(petro.df$Sw<0.5,1,NA), NA),NA)
> plot(petro.df$depth,petro.df$net.pay,type='l',main='Zonas de Net
Pay',xlab='Prof ft',ylab='Pay Zones',lwd=5,col='green')
```


Zonas de Net Pay

Vamos agora plotar os 4 parâmetros juntos num formato de melhor visualização e cada intervalo de Net Pay individualmente para ilustrar melhor o resultado.

```
> par(mar=c(1, 4, 8, 4) + 0.1)
> plot(petro.df$VSH, petro.df$depth, axes=FALSE, xlim=c(0,1), type='l', xlab='',
ylab='', col='black', ylim=c(3600, 2000))
> axis(3, xlim=c(0,1), col='black', lwd=1)
> par(new=TRUE)
> plot(petro.df$Sw, petro.df$depth, axes=FALSE, xlim=c(0,2), type='l', xlab='',
ylab='', col='blue', lty=2, ylim=c(3600, 2000), lwd=1)
> axis(3, xlim=c(0,2), col='blue', lwd=1, line=2)
> par(new=TRUE)
> plot(petro.df$phi, petro.df$depth, axes=FALSE, xlim=c(0,2), type='l', xlab='',
ylab='', col='red', lty=3, ylim=c(3600, 2000), lwd=1)
> axis(3, xlim=c(0,2), col='red', lwd=1, line=4)
> par(new=TRUE)
> plot(petro.df$net.pay, petro.df$depth, axes=FALSE, xlim=c(0,4),
type='l', xlab='', ylab='', col='green', lty=4, ylim=c(3600, 2000), lwd=15)
```

axis(3, xlim=c(0,4),col='green',lwd=1,line=6) axis(2,pretty(range(petro.df\$depth),100)) mtext('depth',side=2,col="black",line=2) legend(x=2.5,y=2000,legend=c('VSH','Sw','Porosidade','Net ay'),lty=c(1,2,3,4),col=c('black','blue','red','green')) Pav')

6.4 - Dados SEG-Y

O formato de arquivo SEG-Y é um dos padrões da Society of Exploration Geophysicists (SEG) para armazenar dados geofísicos de sísmica e GPR. É um padrão aberto e é controlado pelo comitê de padrões técnicos da SEG.

Arquivos SEG-Y são divididos em três partes principais (genericamente falando); Cabeçalho do arquivo (3200 bytes texto mais 400 bytes binário), Cabeçalho de Traço (240 bytes), e dado binário do Traço.

Mais informações sobre o formato podem ser encontradas em <u>https://seg.org/Portals/0/SEG/News</u> <u>%20and%20Resources/Technical%20Standards/seg y rev1.pdf</u>.

Vamos mostrar como ler este arquivo usando R.

```
Primeiro o Cabeçalho texto e binário:
```

<pre>> hdbn<-c('JOB_ID_NO','LINE_NUMBER','REEL_NUMBER','TRACES_PER_RECORD', 'AUXS_PER_RECORD','SMPL_RATE','SAMPLE_RATE_FIELD','NSAMPLES','NSAMPLES_FIELD', 'FORMAT_CODE','ENSEMBLE_FOLD','TRACE_SORT','VERTICAL_SUM','SWEEP_FREQ_START', 'SWEEP_FREQ_END','SWEEP_FREQ_LENGTH','SWEEP_TYPE','SWEEP_TRACE_NO', 'SWEEP_TAPER_LENGTH_START','SWEEP_TAPER_LENGTH_END','SWEEP_TAPER_TYPE', 'CORRELATED_TRACES','BIN_GAIN','AMP_RECOVERY_METHOD','UNITS','SIGNAL_POLARITY', 'VIBRATOR_POL_CODE','UNUSED','SEGY_FORMAT_REVISION_NO','SEGY_FIXEDLEN_FLAG',</pre>
'SEGY_NO_TEXTFHEADERS', 'UNUSED')
> con <- file("1104-30A.segy","rb")
<pre>> header.text<-c('bogus','data')fam(data')</pre>
> $TOr(1 \ 1n \ 1:40)$ {
<pre>uec<-redubin(con, rdw ,Size=1,N=00) booder text[i]< posto0(iconv(rowToCbor(dec multiple=T)</pre>
<pre>'utf8') collapse-'')</pre>
}
<pre>> seek(con.3200) #ao to byte 3201</pre>
> hd.bin<-c(1.0,1.7)
> step<-1
<pre>> for (i in step:(step+2)){</pre>
hd.bin[step]<-readBin(con,'int',size=4,endian='big') step<-step+1
<pre>}</pre>
<pre>> for (1 in step:(step+23)){ hd.bin[step]<-readBin(con,'int',size=2,endian='big') step<-step+1</pre>
}
> hd.bin[step]<-0
> seek(con, 3500)
#[1] 3200
<pre>> Step<-Step+1 > for (i in stop(stop(2)))</pre>
<pre>hd.bin[step:(step+2)/{ hd.bin[step]<-readBin(con,'int',size=2,endian='big') step<-step+1</pre>
}
> hd.bin[step]<-0
> seek(con, 3600)
#[1] 3506
<pre>> header.bin<-data.frame(field=hdbn,value=hd.bin)</pre>

Calculando o números de traços a amostras por traço

```
> fl.sz<-file.info('1104-30A.segy')$size
> fl.sz
#[1] 50995140
> header.repetitions<-header.bin[31,2]
> header.repetitions
#[1] 0
> num.samples<-header.bin[8,2]
> num.samples
#[1] 2751
> num.tr<-(fl.sz-3600-3600*header.repetitions)/(240+num.samples*4)
> num.tr
#[1] 4535
> seek(con,3600+3600*header.repetitions)
```

Lendo os dados dos traços:

```
> count<-c(7,4,8,2,4,46,5,2,3,4,6,1,2)</pre>
> byte.me<-c(4,2,4,2,4,2,4,2,4,2,2,2,2,2,4)
> trace.bin<-c(1,2)</pre>
> trace.header<-list(data.frame(field='oi',value=1))</pre>
> l.tr<-list(c(1,2,3))</pre>
> trace<-c(1,2,3)</pre>
> for (i in 1:num.tr){
  tbc<-1
  for (a in 1:13){
   for (c in 1:count[a]){
     trace.bin[tbc]<-readBin(con,'int',size=byte.me[a],endian='big')</pre>
     tbc<-tbc+1
   }
  }
  frame<-data.frame(value=trace.bin)</pre>
  trace.header[[i]]<-frame</pre>
  for(s in 1:num.samples){
   trace[s]<-readBin(con,'double',size=4,endian='big')</pre>
  l.tr[[i]]<-as.single(trace)</pre>
> close(con)
```

Colocando toda informação junta:

```
> segY<-list(header.text,header.bin,trace.header,l.tr)</pre>
```

E carregando no geobanco:

```
> segy.name<-'1104-30A'
> header.joined<-paste(segY[[1]],collapse='\n')
> header.text<-data.frame(segy=segy.name,text=header.joined)
> header.binary<-data.frame(segy=segy.name,segY[[2]])
> library(RPostgreSQL)
> con<-dbConnect(PostgreSQL(),host="127.0.0.1", user= "...",
password="...", dbname="geobanco")
> dbWriteTable(con, "sgy_hd_txt",value=header.text,append= TRUE,
row.names=FALSE)
> dbWriteTable(con, "sgy_hd_bin",value=header.binary,append= TRUE,
row.names=FALSE)
> trhdbn<-c("TRACE_SEQ_NO", "TRACE_SEQ_REEL", "FIELD_RECORD_NO", "CHANNEL_NO",
"SHOT_POINT_NO", "CMP_NO", "CMP_SEQ_NO", "TRACE_ID_CODE", "FOLD", "TRACE_HSTACK",
"TEST_CODE", "OFFSET_SH_REC", "ELEV_REC", "ELEV_SHOT", "DEPTH_SHOT",
"DATUM_ELEV_REC", "ELEV_FLOATDATUM_SRC", "WATER_DEPTH_SHOT", "WATER_DEPTH_REC",
"ELEV_DEPTH_SCALER", "COORD_SCALER", "XSHOT", "XREC", "XREC", "YREC", "UNITS",
```

Este passo final pode demorar (meia hora) uma vez que esses arquivos podem ser muito grandes:

```
> sql<-"CREATE TABLE sgy_tr_data (segy text,trace int,value numeric(18,9)[]);"
> dbGetQuery(con,sql)
> for (t in 1:num.tr){
    trace<-"'{"
    for (c in 1:num.samples){
        if(c==1){trace<-paste0(trace,as.character(segY[[4]][[t]][c]*1))}
        else{trace<-paste0(trace,",",as.character(segY[[4]][[t]][c]*1))}
    }
    trace<-paste0(trace,",",as.character(segY[[4]][[t]][c]*1))}
    }
    trace<-paste0(trace,"}'")
    sql<-paste0("INSERT INTO sgy_tr_data (segy,trace,value)
VALUES('",segy.name, "',",t,",",trace,");")
    dbSendQuery(con,sql)
    }
```

Extraindo os dados de um SEG-Y do geobanco:

```
> library(RPostgreSQL)
> con<-dbConnect(PostgreSQL(),host="127.0.0.1", user= "...",password="...",
dbname="geobanco")
> sql<-"select text from sgy_hd_txt where segy='1104-30A';"
> segy.header.txt<-dbGetQuery(con,sql)
> sql1<-"select field,value from sgy_hd_bin where segy='1104-30A';"
> segy.header.bin<-dbGetQuery(con,sql1)
> sql2<-"select trace,code,value from sgy_trhd where segy='1104-30A';"
> segy.trace.header<-dbGetQuery(con,sql2)
> sql3<-"select trace,value from sgy_tr_data where segy='1104-30A';"
> segy.trace.data<-dbGetQuery(con,sql3)
> lista.SGY<-list(segy.header.txt,segy.header.bin,segy.trace.header,
segy.trace.data)
```

Podemos visualizar a informação extraída usado:

>	li	.sta.SGY[[1]]										
1	С	1 CLIENT MMS			COMF	PANY	GEC0				CREW NC)
С	2	LINE 1104-30A AREA	PH/	ASE-30A			М	IAP 🛛	ID			
С	3	REEL NO 17784MIG0 DAY	- S ⁻	TART OF	REEL		YEAR		0BSER\	/ER		
С	4	INSTRUMENT: MFG		MODE	EL		S	ERI/	AL NO			
С	5	DATA TRACES/RECORD		AUXII	_IARY	TRA(CES/RE	CORI)	CDP	FOLD	
С	6	SAMPLE INTERVAL	4	SAMPLES	5/TRAC	CE 2	2750 B	SITS,	/IN G	BYT	ES/SAMPL	

C 7 RECORDING FORMAT FORMAT THIS REEL MEASUREMENT SYSTEM C 8 SAMPLE CODE: FLOATING PT 032 FIXED PT FIXED PT-GAIN CORRELAT C 9 GAIN TYPE: FIXED BINARY FLOATING POINT OTHER C10 FILTERS: ALIAS HZ NOTCH HZ BAND - HZ SL C10 FILTERS: ALIAS HZ NOTCH HZ C11 SOURCE: TYPE AIRGUN NUMBER/POINT HZ SLOPE POINT INTERVAL PATTERN: LENGTH C12 WIDTH C13 SWEEP: START HZ END HZ LENGTH C14 TAPER: START LENGTH MS END LENGTH HZ LENGTH MS CHANNEL NO TYPE MS TYPE C15 SPREAD: OFFSET MAX DISTANCE GROUP INTERVAL C16 GEOPHONES: PER GROUP SPACING FREQUENCY MFG MODE PATTERN: C17 LENGTH WIDTH C18 TRACES SORTED BY: RECORD CDP OTHER C19 AMPLITUDE RECOVERY: NONE SPHERICAL DIV AGC OTHER C20 PROJECTION : SPHEROID : C21 FAMILY 1 DEFAULTS: DATA TRACES/RECORDAUXILIARY TRC22SAMPLE INTERVALSAMPLES/TRACEC23 FAMILY 3 DEFAULTS: SAMPLE INTERVALSAMPLES/TRACE AUXILIARY TRACES/RECORD C24 CENTRAL MERIDIAN : 0 0 0.0 E ORIGIN PARALLEL : 0 0 0.0 N C25 FALSE NORTHING : 0.0 FALSE EASTING : 0.0 UNIT TO METER :0.000000 C26 C27 MXYMRGOV 15.06.22 12- 8-88 A6602IM4 0526 1104-30 C28 C29 C30 C31 C32 C33 C34C35 C36 C37 C38 C39 C40 END EBCDIC > lista.SGY[[2]] field value 1 JOB ID NO 526 2 3 4 5 6 LINE NUMBER 1104 REEL NUMBER 30 TRACES PER RECORD AUXS PER RECORD 0 SAMPLE RATE 4000 SAMPLE_RATE FIELD 0 NSAMPLES 2751 NSAMPLES_FIELD 2751 8 9 10 FORMAT_CODE 11 ENSEMBLE_FOLD 12 TRACE_SORT 4 VERTICAL_SUM 13 2 SWEEP FREQ START 0 14 15 SWEEP FREQ END 0 16 SWEEP_FREQ_LENGTH 0 17 SWEEP TYPE 0 18 SWEEP TRACE NO 0 19 SWEEP TAPER LENGTH START 0 20 SWEEP_TAPER_LENGTH_END 0 SWEEP_TAPER_TYPE CORRELATED_TRACES 21 0 22 0 BINARY_GAIN 23 0 24 AMP_RECOVERY_METHOD 0 25 UNITS 26 SIGNAL POLARITY 0

27 28 29 30 31 32	VIB SEGY_FORM SEGY SEGY_N	RATOR_POL_CODE 0 UNUSED 0 AT_REVISION_NO 0 _FIXEDLEN_FLAG 0 O_TEXTFHEADERS 0 UNUSED 0		
> h	ead(lista.	SGY[[3]],n=94L)	-	
-	trace	code	value	
Ţ	1	IRACE_SEQ_NO	1	
2	1	IRACE_SEQ_REEL	1	
3	1	FIELD_RECORD_NO	9936	
4	1	CHANNEL_NO	3	
5	1	SHOT_POINT_NO	99430	
6	1	CMP_NO	231	
7	1	CMP_SEQ_NO	27	
8	1	IRACE_ID_CODE	1	
9	1		2	
10	1		0	
	1		L 210	
12	1 1		010	
1 <i>1</i>	1 1		0	
14 15	1 1		0	
15 16	1 1	DATIM ELEV REC	0	
17	1	ELEV ELOATDATUM SEC	0	
18	1	WATER DEPTH SHOT	0	
10	1	WATER DEPTH REC	0	
20	1	FLEV DEPTH SCALER	1	
21	1		- 100	
22	1	XSHOT	96025063	
23	1	YSHOT	-337967999	
24	1	XREC	135312400	
25	1	YREC	967985300	
26	1	UNITS	1	
91	1		- 14397	
92	1		-3851	
93	1		Θ	
94	1	-	Θ	
> h [1] 0.7	ead(lista. "{0.68266 40177929,-	SGY[[4]],n=1L) 3143,0.395595610,0.276 0.969260693,-0.7260610	0713848,0.70 46,0.18125	04893410,0.631148875,- 1049,-0.699826598,-0.904339194,
- 0.3 014	01578641,1 2,1.077815	.829489350,2.355402708 175,2.294286251,2.5207	,2.35220360 61013}"	08,1.950937629,0.994827628,0.81616

Visualizando os dados carregados a partir do arquivo SEG-Y:

```
> plot((rep(1,2751)/10)+1,c(-1:-2751),type='l',xlim=c(1,4500),
xlab='traço', ylab='Sample')
> for(i in 1:4500){
   sepa<-gsub('[:{:]','',lista.SGY[[4]]$value[i])
   sepa2<-gsub('[:}:]','',sepa)
   sepa3<-as.numeric(unlist(strsplit(sepa2,","),use.names=F))
   lines((sepa3/10)+i,c(-1:-2751),type='l',lwd=0.1)
}
```


traço

6.5 – Dados de Geofísica aérea (Oasis Montaj)

Dados de geofísica aérea normalmente estão no seguinte formato:

1										
/	XYZ EXPORT	[07/03/20	15]							
/	DATABASE	[.\mag_su	b2.adb1							
1										
',										
',				~~~~~						
1	Х	Y	FIDUCIAL	GPSALT	BARO	ALTURA	MD.L.	MAGBASE	MAGBRU	• • •
/=										
/										
11	Flight 16									
11	Date 2014/0	05/24								
Тi	e 19010									
	217454	9225303	51679.8	459.43	461.28	160.64	298.78	25058.940	25019.602	
	217446	9225303	51679.9	459.38	461.30	159.88	299.50	25058.940	25019.560	
	217438	9225303	51680.0	459.32	461.32	159.11	300.20	25058.940	25019.522	
	217430	9225303	51680.1	459.25	461.34	158.39	300.85	25058.940	25019.486	

E precisamos colocar eles no seguinte formato para carregar no geobanco:

X,Y,FIDUCIAL,GPSALT,BARO,ALTURA,MDT,MAGBASE,MAGBRU,... 217011,9225307,60215.1,483.54,481.87,164.24,319.30,25046.860,24976.290,... 217011,9225315,60215.2,483.74,482.08,161.88,321.86,25046.860,24975.464,...

Fazemos isso em R criando um data.frame com essa característica usando:

```
> xmi<-180000
> xma<-190000
> vmi<-8940684
  yma<-8950684
> #lê arquivo .XYZ e o número de linhas do arquivo
> flcon<-file('1099_MAGLINE.XYZ',open='r')</pre>
> cmd <- paste("wc -l 1099_MAGLINE.XYZ | awk '{ print $1 }'")</pre>
> numberLines <- as.integer(system(command=cmd, intern=TRUE))</pre>
> # lendo as cinco primeiras linhas
> tmp <- readLines(flcon, n=5)</pre>
> # obtendo o nome das colunas
> coluna <-c(strsplit(substring(readLines(flcon, n=1),11),"\\s+")[[1]],</p>
'line/tie')
> n.co<-length(coluna)+1</pre>
> # lendo mais 2 linhas
> tmp <- readLines(flcon, n=2)</pre>
> lin<-c('a')
> 0<-1
> lineOrTie<-''
> for (i in 11:numberLines){
  l<-substring(readLines(flcon, n=1),2)</pre>
  if(substring(l,1,2) == 'ie' || substring(l,1,2) == 'in'){
   lineOrTie<-substring(1,5)</pre>
  }else{
   v<-as.numeric(strsplit(l, "\\s+")[[1]][2])
w<-as.numeric(strsplit(l, "\\s+")[[1]][3])</pre>
   # se for usar limites remover comentário
   if(v>xmi & v<xma & w>ymi & w<yma){
    lin[o]<-paste(l,lineOrTie)</pre>
    0<-0+1
   }# remover para limites
  }
 }
> close(flcon)
> r <- strsplit(sub("^\\s+","",lin), "\\s+")</pre>
> s <-as.data.frame(do.call(rbind, r))</pre>
> names(s)<- coluna</pre>
> cols = c(1:19)
 s[,cols] = apply(s[,cols], 2, function(x) as.numeric(as.character(x)))
```

> library(raster)							
<pre>> coordinates(s)<-~X+Y</pre>							
<pre>> crs(s)<-CF</pre>	RS('+init=epsg:32721')						
> S							
class	: SpatialPointsDataFrame						
features	: 23839						
extent	: 180046.6, 189586.6, 8940685, 8950293 (xmin, xmax, ymin, ymax)						
crs	: +init=epsg:32721 +proj=utm +zone=21 +south +datum=WGS84 +units=m						
+no_defs +el	lps=WGS84 +towgs84=0,0,0						
variables	: 17						
names	: FIDUCIAL, GPSALT, BARO, ALTURA, MDT, MAGBRU, MAGCOM,						
MAGCOR,	MAGNIV, MAGMIC, MAGIGRF, IGRF, LONGITUDE, LATITUDE,						
DATA,							
min values	: 109652.0, 407.61, 402.67, 100.01, 307.94, 24409.5967, 24406.2140,						
24429.4423,	24428.2533, 24428.6013, -0.0069, 24517.99, -53.826942, -9.484214,						
2010/01/21,							
max values	: 81107.0, 505.91, 502.66, 99.99, 409.51, 24634.4792, 24632.8914,						
24667.1354,	24663.1780, 24664.9821, 99.8617, 24538.71, -53.914135, -9.571518,						
2010/01/27,							

Carregamos o SpatialPointDataFrame acima no geobanco usando:

- > library(rpostgis)
 > con<-dbConnect(PostgreSQL(),dbname='geobanco',user='voce',password='segredo')
 > pgInsert(con, name = c("public", "magnetometria"), data.obj = s)

E extraímos os dados do geobanco usando:

- > library(rpostgis)
- > library(raster)
 > con<-dbConnect(PostgreSQL(),dbname='rteste',user='voce',password='segredo')
 > mag<-pgGetGeom(con,c('public','magnetometria'))</pre>

Plotando:

- > library(tmap)
- > mag\$MAGIGRF<-as.numeric(mag\$MAGIGRF)</pre>
- > tm_shape(mag) + tm_dots(size=0.15,col = "MAGIGRF", palette = "Reds", style = "quantile", title='Residual Campo Total')

